-->

Integrals

Question
CBSEENMA12032375

Evaluate the following definite integrals as limit of sums.
integral subscript 2 superscript 3 straight x squared dx

Solution

Let             I = integral subscript 2 superscript 3 straight x squared dx
Since    integral straight x squared dx space equals space straight x cubed over 3 space equals space straight F left parenthesis straight x right parenthesis comma space say.
therefore    by second fundamental theorem,
                                     I = F(3) - F(2) = fraction numerator left parenthesis 3 right parenthesis cubed over denominator 3 end fraction minus fraction numerator left parenthesis 2 right parenthesis cubed over denominator 3 end fraction space equals space 9 minus 8 over 3 space equals space 19 over 3

Some More Questions From Integrals Chapter