-->

Vector Algebra

Question
CBSEENMA12033973

Prove that the sum of all the v ectors from the centre of a regular octagon to its vertices is the zero vector.

Solution

Let O be the centre of regular octagon  ABCDEFGH.
           therefore        O is mid-point of each of the diagonals AE, BF, CG and DH.
because                 O is mid-point of AE.
           because          OA with rightwards arrow on top space equals space minus OE with rightwards arrow on top
            therefore space space space OA with rightwards arrow on top space plus space OE with rightwards arrow on top space equals space 0 with rightwards arrow on top                          ...(1)

Similarly OB with rightwards arrow on top space plus space OF with rightwards arrow on top space equals space 0 with rightwards arrow on top                                                                  ...(2)
OC with rightwards arrow on top space plus space OG with rightwards arrow on top space equals space 0 with rightwards arrow on top                                             ...(3)
OD with rightwards arrow on top space plus space OH with rightwards arrow on top space equals space 0 with rightwards arrow on top                                             ...(4)
Adding (1), (2), (3) and (4). we get,
OA with rightwards arrow on top space plus space OB with rightwards arrow on top space plus space OC with rightwards arrow on top space plus space OD with rightwards arrow on top space plus space OE with rightwards arrow on top space plus space OF with rightwards arrow on top space plus space OG with rightwards arrow on top space plus space OH with rightwards arrow on top space equals space 0 with rightwards arrow on top.
Hence the result.