-->

Vector Algebra

Question
CBSEENMA12033966

For any two vectors straight a with rightwards arrow on top space and space straight b with rightwards arrow on top, prove that
(i)        open vertical bar straight a with rightwards arrow on top space plus space straight b with rightwards arrow on top close vertical bar space less or equal than space open vertical bar straight a with rightwards arrow on top close vertical bar space plus space open vertical bar straight b with rightwards arrow on top close vertical bar              (ii)     open vertical bar straight a with rightwards arrow on top space minus space straight b with rightwards arrow on top close vertical bar space less or equal than space open vertical bar straight a with rightwards arrow on top close vertical bar space plus space open vertical bar straight b with rightwards arrow on top close vertical bar         (iii) open vertical bar straight a with rightwards arrow on top space minus space straight b with rightwards arrow on top close vertical bar space space space greater-than or slanted equal to space space open vertical bar straight a with rightwards arrow on top close vertical bar space minus space open vertical bar straight b with rightwards arrow on top close vertical bar

Solution
Case I,   straight a with rightwards arrow on top space and space straight b with rightwards arrow on top are non-collinear vectors. 
                    Let OA with rightwards arrow on top space equals space straight a with rightwards arrow on top comma space space AB with rightwards arrow on top space equals straight b with rightwards arrow on top
therefore space space space space space space space OB with rightwards arrow on top space equals OA with rightwards arrow on top space plus space AB with rightwards arrow on top space equals space straight a with rightwards arrow on top space plus straight b with rightwards arrow on top
Now space space space OA space equals space open vertical bar straight a with rightwards arrow on top close vertical bar comma space space AB space equals space open vertical bar straight b with rightwards arrow on top close vertical bar comma
space space space space space space space space space space space space OB space equals space open vertical bar straight a with rightwards arrow on top space plus space straight b with rightwards arrow on top close vertical bar
   We know that in a triangle sum of two sides of triangle is always >  third side
             therefore space space space space space space space OA plus AB greater than OB
rightwards double arrow space space space space space space space open vertical bar straight a with rightwards arrow on top close vertical bar space plus space open vertical bar straight b with rightwards arrow on top close vertical bar space greater than space space space open vertical bar straight a with rightwards arrow on top space plus space straight b with rightwards arrow on top close vertical bar
therefore space space space space space space space space open vertical bar straight a with rightwards arrow on top space plus space straight b with rightwards arrow on top close vertical bar space less than space space open vertical bar straight a with rightwards arrow on top close vertical bar space plus space open vertical bar straight b with rightwards arrow on top close vertical bar


Case II.     straight a with rightwards arrow on top space and space straight b with rightwards arrow on top are collinear vectors.
    Let OA with rightwards arrow on top space equals space straight a with rightwards arrow on top comma space space space AB with rightwards arrow on top space equals space straight b with rightwards arrow on top space then space OB with rightwards arrow on top space equals space OA with rightwards arrow on top space plus space AB with rightwards arrow on top space equals space straight a with rightwards arrow on top space plus space straight b with rightwards arrow on top
     Also,   OA space equals space open vertical bar straight a with rightwards arrow on top close vertical bar comma space space space AB space equals open vertical bar straight b with rightwards arrow on top close vertical bar comma space space space OB space equals space open vertical bar straight a with rightwards arrow on top space plus space straight b with rightwards arrow on top close vertical bar
    Now,    OB space equals space OA plus AB
therefore space space space space space space open vertical bar straight a with rightwards arrow on top space plus space straight b with rightwards arrow on top close vertical bar space equals space open vertical bar straight a with rightwards arrow on top close vertical bar space plus space open vertical bar straight b with rightwards arrow on top close vertical bar
Combining the results of Case I and II,  we get,
                           open vertical bar straight a with rightwards arrow on top space plus space straight b with rightwards arrow on top close vertical bar space less or equal than space space open vertical bar straight a with rightwards arrow on top close vertical bar space plus space open vertical bar straight b with rightwards arrow on top close vertical bar
Combining the results of Case I and II, we get,
                               open vertical bar straight a with rightwards arrow on top space plus space straight b with rightwards arrow on top close vertical bar space less or equal than space open vertical bar straight a with rightwards arrow on top close vertical bar space plus space open vertical bar straight b with rightwards arrow on top close vertical bar
(ii)                     open vertical bar straight a with rightwards arrow on top minus straight b with rightwards arrow on top close vertical bar space equals space open vertical bar straight a with rightwards arrow on top plus left parenthesis negative straight b with rightwards arrow on top right parenthesis close vertical bar space less or equal than space open vertical bar straight a with rightwards arrow on top close vertical bar space plus space open vertical bar negative straight b with rightwards arrow on top close vertical bar space equals space open vertical bar straight a with rightwards arrow on top close vertical bar space plus space open vertical bar straight b with rightwards arrow on top close vertical bar
therefore                  open vertical bar straight a with rightwards arrow on top minus straight b with rightwards arrow on top close vertical bar space less or equal than open vertical bar straight a with rightwards arrow on top close vertical bar space plus space open vertical bar straight b with rightwards arrow on top close vertical bar
(iii)          open vertical bar straight a with rightwards arrow on top close vertical bar space equals space open vertical bar left parenthesis straight a with rightwards arrow on top space minus space straight b with rightwards arrow on top right parenthesis space plus space straight b with rightwards arrow on top close vertical bar space less or equal than space open vertical bar stack straight a space with rightwards arrow on top space minus space straight b with rightwards arrow on top close vertical bar space plus space open vertical bar straight b with rightwards arrow on top close vertical bar
therefore space space space space space space open vertical bar straight a with rightwards arrow on top close vertical bar space minus space open vertical bar straight b with rightwards arrow on top close vertical bar space less or equal than space space open vertical bar straight a with rightwards arrow on top space minus space straight b with rightwards arrow on top close vertical bar
rightwards double arrow space space space space space space space open vertical bar straight a with rightwards arrow on top space minus space straight b with rightwards arrow on top close vertical bar space greater or equal than space space open vertical bar straight a with rightwards arrow on top close vertical bar space minus space open vertical bar straight b with rightwards arrow on top close vertical bar.