-->

Probability

Question
CBSEENMA12033831

Five defective bulbs are accidentally mixed with twenty good ones. It is not possible to just look at a bulb and tell whether or not a bulb is defective. Four bulbs are drawn at random from this lot. Find the mean number of defective bulbs drawn.

Solution
Let us denote by X, the number of defective bulbs. Clearly X can take the values 0, 1, 2, 3, 4.
P(X = 0) = (no defective bulb) = P(all 4  goods ones)
                                              equals space fraction numerator straight C presuperscript 20 subscript 4 over denominator straight C presuperscript 25 subscript 4 end fraction space equals space fraction numerator 20 cross times 19 cross times 18 cross times 17 over denominator 25 cross times 24 cross times 32 cross times 22 end fraction space equals space 969 over 2530
P(X = 1) = P(1 defective and 3 good ones)
              equals space fraction numerator straight C presuperscript 5 subscript 1 cross times straight C presuperscript 20 subscript 3 over denominator straight C presuperscript 25 subscript 4 end fraction space equals space fraction numerator begin display style 5 over 1 end style cross times begin display style fraction numerator 20 cross times 19 cross times 18 over denominator 1 cross times 2 cross times 3 end fraction end style over denominator begin display style fraction numerator 25 cross times 24 cross times 23 cross times 22 over denominator 1 cross times 2 cross times 3 cross times 4 end fraction end style end fraction space equals space 1140 over 2530
P(X = 2) = P(2 defective and 2  good ones)
               equals space fraction numerator straight C presuperscript 5 subscript 2 cross times straight C presuperscript 20 subscript 2 over denominator straight C presuperscript 25 subscript 4 end fraction space equals space fraction numerator begin display style fraction numerator 5 cross times 4 over denominator 1 cross times 2 end fraction end style cross times begin display style fraction numerator 20 cross times 19 over denominator 1 cross times 2 end fraction end style over denominator begin display style fraction numerator 25 cross times 24 cross times 23 cross times 22 over denominator 1 cross times 2 cross times 3 cross times 4 end fraction end style end fraction space equals space 380 over 2530
P(X  = 3) = P(3 defective and one good one)
               equals space fraction numerator straight C presuperscript 5 subscript 3 cross times straight C presuperscript 20 subscript 1 over denominator straight C presuperscript 25 subscript 4 end fraction space equals space fraction numerator begin display style fraction numerator 5 cross times 4 over denominator 1 cross times 2 end fraction end style cross times begin display style 20 over 1 end style over denominator begin display style fraction numerator 25 cross times 24 cross times 23 cross times 22 over denominator 1 cross times 2 cross times 3 cross times 4 end fraction end style end fraction space equals 40 over 2530
P(X = 4) = P(all 4 defective)
                      equals space fraction numerator straight C presuperscript 5 subscript 4 over denominator straight C presuperscript 25 subscript 4 end fraction space equals space fraction numerator begin display style 5 over 1 end style over denominator begin display style fraction numerator 25 cross times 24 cross times 23 cross times 22 over denominator 1 cross times 2 cross times 3 cross times 4 end fraction end style end fraction space equals 1 over 2530
∴ Probability distribution table is

therefore space mean space sum straight x space straight p subscript straight i space equals space 4 over 5

Some More Questions From Probability Chapter