-->

Probability

Question
CBSEENMA12033741

There are three urns A, B and C. Urn A contains 4 white balls and 5 blue balls. Urn B contains 3 white balls and 4 blue balls. Urn C contains 3 white balls and 6 blue balls. One ball is drawn from each of these urns. What is the probability that out of these three balls drawn, two are white balls and one is a blue ball?

Solution

                                                  Urn A                Urn B                  Urn C
White                                          4                          3                       3
Blue                                            5                          4                       6
P(two third and one blue) = P(WWB) + P(WBW) + P(BWW)
               = P(W) P(W) P(B) + P(W) P(B) P(W) + P(B) P(W) P(W)                equals space 4 over 9 cross times 3 over 7 cross times 6 over 9 plus 4 over 9 cross times 4 over 7 cross times 3 over 9 plus 5 over 9 cross times 3 over 7 cross times 3 over 9 space equals 72 over 567 plus 48 over 567 plus 45 over 567 equals 165 over 567 equals 55 over 189.

Some More Questions From Probability Chapter