-->

Linear Programming

Question
CBSEENMA12033528

Solve the following Linear Programming Problems graphically:
Minimise    Z = 5x + 3y
subject to the constraints: 3x + 5y ≤ 15, 5x + 2y ≤ 10, x ≥ 0, y ≥ 0.

Solution

We have to maximise
Z = 5x + 3 y
subject to the constraints
3x + 5 y ≤ 15
5x + 2 y ≤ 10
x ≥ 0, y ≥ 0
Consider a set of rectangular cartesian axes OXY in the plane.
It is clear that any point which satisfies x ≥ 0, y ≥ 0 lies in the first quadrant.
Let us draw the graph of 3x + 5 y= 15
For x = 0, 5 y = 15 or y = 3
For y = 0, 3x = 15 or x = 5
∴ line meets OX in A(5, 0) and OY in L(0, 3).
Again we draw the graph of 5x + 2 y = 10
For x = 0, 2 y = 10 or y = 5
For y = 0, 5x = 10 or x = 2
∴ line meets OX in B(2, 0) and OY in M(0, 5).
Since feasible region is the region which satisfies all the constraints.

∴ OBCL is the feasible region and corner points are O(0, 0), B(2, 0),
    straight C open parentheses 20 over 19 comma space 45 over 19 close parentheses comma space space space space straight L left parenthesis 0 comma space 3 right parenthesis.
At straight O left parenthesis 0 comma space 0 right parenthesis comma space                                straight Z space equals space 0 plus 0 space equals space 0
At straight B left parenthesis 2 comma space 0 right parenthesis comma                                 straight Z space equals 10 plus 0 space equals 10
At  straight C open parentheses 20 over 19 comma space 45 over 19 close parentheses comma space space space straight Z space equals 100 over 19 plus 135 over 19 space equals space 235 over 19
At space space space space straight L left parenthesis 0 comma space 3 right parenthesis comma space space space space space space space straight Z space equals space 0 plus 9 space equals space 9
therefore space space space maximum space value space space equals space 235 over 19 space at space open parentheses 20 over 19 comma space 45 over 19 close parentheses.