-->

Linear Programming

Question
CBSEENMA12033525

Find the maximum value of f = x + 2 y subject to the constraints:
2x + 3 y ≤ 6
x + 4 y ≤ 4
x, y ≥ 0

Solution

We are to maximize
f = x + 2y
subject to the constraints
2x + 3 y ≤ 6
x + 4 y ≤ 4
x, y ≥ 0
Consider a set of rectangular cartesian axes OXY in the plane.
It is clear that any point which satisfies x ≥ 0, y ≥ 0 lies in the first quadrant.
Now we draw the graph of the line 2 x + 3 y = 6.
For x = 0, 3 y = 6, or y = 2
For y = 0, 2 x = 6, or x = 3
∴  line meets OX in A (3, 0) and OY in L (0, 2)
Let us draw the graph of line x + 4 y = 4
For x = 0, 4 y = 4, or y = 1
For y = 0, x = 4
∴  line meets OX in B (4, 0) and OY in M (0, 1)

Since feasible region is the region which satisfies all the constraints
∴    OACM is the feasible region. The comer points are
     straight O left parenthesis 0 comma space 0 right parenthesis comma space space space straight A left parenthesis 3 comma space 0 right parenthesis comma space space space straight C open parentheses 12 over 5 comma space 2 over 5 close parentheses comma space space space straight M left parenthesis 0 comma space 1 right parenthesis
At straight O left parenthesis 0 comma space 0 right parenthesis space straight f space equals 0 plus 0 space equals space 0
At space straight A left parenthesis 3 comma space 0 right parenthesis comma space straight f space space equals space 3 plus 0 space equals space 3
At space straight C open parentheses 12 over 5 comma space 2 over 5 close parentheses comma space space space straight f space equals space 12 over 5 plus 4 over 5 space equals space 16 over 5 space equals space 3.2
At space straight M left parenthesis 0 comma space 1 right parenthesis comma space space straight f space equals space 0 plus 2 space equals space 2
therefore space space space space maximum space value space equals space 3.2 space at space open parentheses 12 over 5 comma space 2 over 5 close parentheses.