-->

Three Dimensional Geometry

Question
CBSEENMA12033515

Find the equations of the line passing through (1, – 2, 3) and parallel to the planes x – y + 2 z = 5 and 3 x + 2y – z = 6. 

Solution

Let a, b, c the direction ratios of the line passing through the point (1, - 2, 3).
∴    equations of line are
           fraction numerator straight x minus 1 over denominator straight a end fraction equals fraction numerator straight y plus 2 over denominator straight b end fraction equals fraction numerator straight z minus 3 over denominator straight c end fraction                                              ...(1)
Since line (1) parallel to the plane x - y + 2z = 5 whose direction ratios of the normal are 1, -1, 2
∴  a(1) +b(– 1) + c(2) = 0
or    a – b +2c=0    ... (2)
Again line (1) is parallel to the plane 3x + 2y – z = 6
∴ 3a + 2b – c = 0    ...(3)
From (2) and (3), we get
                   fraction numerator straight a over denominator 1 minus 4 end fraction space equals space fraction numerator straight b over denominator 6 plus 1 end fraction space equals space fraction numerator straight c over denominator 2 plus 3 end fraction
therefore space space space space fraction numerator straight a over denominator negative 3 end fraction space equals space straight b over 7 space equals space straight c over 5
∴ from (1), the equations of line are
fraction numerator straight x minus 1 over denominator negative 3 end fraction space equals space fraction numerator straight y plus 2 over denominator 7 end fraction space equals space fraction numerator straight z minus 3 over denominator 5 end fraction

Some More Questions From Three Dimensional Geometry Chapter