-->

Three Dimensional Geometry

Question
CBSEENMA12033507

Show that the lines fraction numerator straight x plus 3 over denominator negative 3 end fraction space equals space fraction numerator straight y minus 1 over denominator 1 end fraction space equals space fraction numerator straight z minus 5 over denominator 5 end fraction space and space fraction numerator straight x plus 1 over denominator negative 1 end fraction space equals fraction numerator straight y minus 2 over denominator 2 end fraction space equals fraction numerator straight z minus 5 over denominator 5 end fraction are coplanar.

Solution
The given lines are
fraction numerator straight x plus 3 over denominator negative 3 end fraction space equals fraction numerator straight y minus 1 over denominator 1 end fraction space equals fraction numerator straight z minus 5 over denominator 5 end fraction space and space fraction numerator straight x plus 1 over denominator negative 1 end fraction space equals space fraction numerator straight y minus 2 over denominator 2 end fraction space equals space fraction numerator straight z minus 5 over denominator 5 end fraction
These equations can be written as
fraction numerator straight x minus left parenthesis negative 3 right parenthesis over denominator negative 3 end fraction space space equals fraction numerator straight y minus 1 over denominator 1 end fraction space equals fraction numerator straight z minus 5 over denominator 5 end fraction space and space fraction numerator straight x minus left parenthesis negative 1 right parenthesis over denominator negative 1 end fraction space equals space fraction numerator straight y minus 2 over denominator 2 end fraction space equals space fraction numerator straight z minus 5 over denominator 5 end fraction
∴  x1 = –3, y1= 1, z1 = 5, a1 = –3, b1= 1, c1 = 5
x2 = –1, y2 = 2, z2 = 5, a2 = –1 b2 = 2, c2 = 5
The given lines will be coplanar
if       open vertical bar table row cell straight x subscript 1 minus straight x subscript 1 end cell cell straight y subscript 2 minus straight y subscript 1 end cell cell straight z subscript 2 minus straight z subscript 1 end cell row cell straight a subscript 1 end cell cell straight b subscript 1 end cell cell straight c subscript 1 end cell row cell straight a subscript 2 end cell cell straight b subscript 2 end cell cell straight c subscript 2 end cell end table close vertical bar space equals space 0
i.e., if open vertical bar table row 2 1 0 row cell negative 3 end cell 1 5 row cell negative 1 end cell 2 5 end table close vertical bar space equals space 0
i.e.  if  2 space open vertical bar table row 1 5 row 2 5 end table close vertical bar minus 1 open vertical bar table row cell negative 3 end cell 5 row cell negative 1 end cell 5 end table close vertical bar space plus space 0 space open vertical bar table row cell negative 3 end cell 1 row cell negative 1 end cell 2 end table close vertical bar space equals space 0
i.e. if 2 space left parenthesis 5 minus 10 right parenthesis minus 1 space left parenthesis negative 15 plus 5 right parenthesis plus 0 space left parenthesis negative 6 plus 1 right parenthesis space equals space 0
i.e. if –10+10 + 0 = 0
i.e. if 0 = 0, which is true
∴ given lines are coplanar.