-->

Three Dimensional Geometry

Question
CBSEENMA12033504

Find the equation of the plane passing through the origin and parallel to the vectors straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top space space space and space space 3 space straight i with hat on top space minus space straight k with hat on top.

Solution

The equation of any plane through (0, 0, 0) is
A (x – 0) + B (y – 0) + C (z – 0) = 0
or  Ax + By + C z = 0    ...(1)
Since it is parallel to the vectors straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top space and space space 3 stack straight i space with hat on top space minus space straight k with hat on top.
∴   normal to the plane with direction ratios A, B, C is perpendicular to the lines with direction ratios 1, 1,–1 and 3, 0,–1.
∴    A + B – C = 0    ...(2)
and 3A + 0B – C = 0   ...(3)
Solving (2) and (3), we get,

                       fraction numerator straight A over denominator negative 1 minus 0 end fraction space equals space fraction numerator straight B over denominator negative 3 plus 1 end fraction space equals space fraction numerator straight C over denominator 0 minus 3 end fraction
or               fraction numerator straight A over denominator negative 1 end fraction space equals space fraction numerator straight B over denominator negative 2 end fraction space equals space fraction numerator straight C over denominator negative 3 end fraction
therefore space space space space space space space space straight A over 1 space equals space straight B over 2 space equals space straight C over 3 space equals space straight k space left parenthesis say right parenthesis
therefore space space space space space space space space straight A space equals space straight k comma space space space space straight B space equals space 2 straight k comma space space space straight C space equals space 3 straight k

Putting these values of A, B, C in (1), we get,
kx + 2ky + 3kz = 0
or x + 2 y + 3z = 0
which is required equation of plane.

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.