Sponsor Area

Three Dimensional Geometry

Question
CBSEENMA12033503

Find the equation of the plane passing through the points (3, 2, 2) and (1, 0, –1) parallel to the line fraction numerator straight x minus 1 over denominator 2 end fraction space equals space fraction numerator straight y minus 1 over denominator negative 2 end fraction space equals fraction numerator straight z minus 2 over denominator 3 end fraction.

Solution

The equation of plane through (3, 2, 2) is
A (x – 3) + B (y – 2) + C (z – 2) = 0    ...(1)
Since it passes through (1, 0, –1)
∴  A (1 – 3) + B (0 – 2) + C (–1 – 2) = 0
or  –2A – 2B – 3C = 0
∴ 2A + 2B + 3C = 0    .,.(2)
The equation of line is
         fraction numerator straight x minus 1 over denominator 2 end fraction space equals fraction numerator straight y minus 1 over denominator negative 2 end fraction space equals fraction numerator straight z minus 2 over denominator 3 end fraction
Its direction ratios are 2, –2, 3
Since the line is parallel to plane (1) whose normal has direction ratios A, B, C.
∴  normal to plane (1) is perpendicular to line
∴  2A – 2B + 3C = 0    ...(3)
From (2) and (3), we get,
           fraction numerator straight A over denominator 6 plus 6 end fraction space equals fraction numerator straight B over denominator 6 minus 6 end fraction space equals fraction numerator straight C over denominator negative 4 minus 4 end fraction
therefore space space space space space space straight A over 12 space equals space straight B over 0 space equals space fraction numerator straight C over denominator negative 8 end fraction
therefore space space space space space space space straight A over 3 space equals space straight B over 0 space equals space fraction numerator straight C over denominator negative 2 end fraction space equals space straight k space left parenthesis say right parenthesis
therefore space space space space space space space space straight A space equals space 3 straight k comma space space straight B space equals space 0 comma space space straight C space equals space minus 2 straight k
Putting these values of A, B, C in (1), we get,
3k (x – 3) + 0 (y – 2) – 2k (z –2) = 0
or 3 (x – 3) – 2 (z – 2 ) = 0
or 3x – 9 –2z + 4 = 0 or 3x –2z  – 5 = 0

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.