-->

Three Dimensional Geometry

Question
CBSEENMA12033502

Find the equation of the plane passing through the points (1, 2, 3) and (0. –1, 0) and parallel to the line fraction numerator straight x minus 1 over denominator 2 end fraction space equals space fraction numerator straight y plus 2 over denominator 3 end fraction space equals space fraction numerator straight z over denominator negative 3 end fraction.

Solution

The equation of any plane through (1, 2, 3) is
A(x – 1)+B(y – 2) + C(z – 3) = 0    ...(1)
∵ it passes through (0, – 1, 0)
∴ A (0 – 1) + B (– 1 – 2) + C (0 – 3) = 0
∴  – A – 3B – 3C = 0    ⇒ A + 3B + 3C = 0    ...(2)
Since plane (1) is parallel to the line fraction numerator straight x minus 1 over denominator 2 end fraction space equals space fraction numerator straight y plus 2 over denominator 3 end fraction space equals space fraction numerator straight z over denominator negative 3 end fraction
∴  normal to the plane with direction ratios A, B, C is perpendicular to the line with direction ratios 2, 3, – 3.
∴  A(2) + B(3) + C(– 3) = 0    [∵  a1a2+ b1b2 + c1c2 = 0]
∴  2A + 3B-3C = 0
Solving (2) and (3), we get,
           fraction numerator straight A over denominator negative 9 minus 9 end fraction space equals space fraction numerator straight B over denominator 6 plus 3 end fraction space equals space fraction numerator straight C over denominator 3 minus 6 end fraction
therefore space space space space space space space fraction numerator straight A over denominator negative 18 end fraction space equals space straight B over 9 space equals space fraction numerator straight C over denominator negative 3 end fraction
therefore space space space space space space straight A over 6 space equals space fraction numerator straight B over denominator negative 3 end fraction space equals space straight C over 1 space equals space straight k space left parenthesis say right parenthesis
therefore space space space space straight A space equals space 6 space straight k comma space space space straight B space equals space minus 3 space straight k comma space space space straight C space equals space straight k
Putting values of A, B, C in (1), we get,
6k(x – 1) + (–3 k)(y – 2) + k(z – 3) = 0 or    6 (x – 1) –3 (y – 2) + (z – 3) = 0
or    6x – 6 – 3y + 6 + z – 3 = 0
or    6x-3y + z=3
which is required equation of plane.

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.