Sponsor Area

Three Dimensional Geometry

Question
CBSEENMA12033502

Find the equation of the plane passing through the points (1, 2, 3) and (0. –1, 0) and parallel to the line fraction numerator straight x minus 1 over denominator 2 end fraction space equals space fraction numerator straight y plus 2 over denominator 3 end fraction space equals space fraction numerator straight z over denominator negative 3 end fraction.

Solution

The equation of any plane through (1, 2, 3) is
A(x – 1)+B(y – 2) + C(z – 3) = 0    ...(1)
∵ it passes through (0, – 1, 0)
∴ A (0 – 1) + B (– 1 – 2) + C (0 – 3) = 0
∴  – A – 3B – 3C = 0    ⇒ A + 3B + 3C = 0    ...(2)
Since plane (1) is parallel to the line fraction numerator straight x minus 1 over denominator 2 end fraction space equals space fraction numerator straight y plus 2 over denominator 3 end fraction space equals space fraction numerator straight z over denominator negative 3 end fraction
∴  normal to the plane with direction ratios A, B, C is perpendicular to the line with direction ratios 2, 3, – 3.
∴  A(2) + B(3) + C(– 3) = 0    [∵  a1a2+ b1b2 + c1c2 = 0]
∴  2A + 3B-3C = 0
Solving (2) and (3), we get,
           fraction numerator straight A over denominator negative 9 minus 9 end fraction space equals space fraction numerator straight B over denominator 6 plus 3 end fraction space equals space fraction numerator straight C over denominator 3 minus 6 end fraction
therefore space space space space space space space fraction numerator straight A over denominator negative 18 end fraction space equals space straight B over 9 space equals space fraction numerator straight C over denominator negative 3 end fraction
therefore space space space space space space straight A over 6 space equals space fraction numerator straight B over denominator negative 3 end fraction space equals space straight C over 1 space equals space straight k space left parenthesis say right parenthesis
therefore space space space space straight A space equals space 6 space straight k comma space space space straight B space equals space minus 3 space straight k comma space space space straight C space equals space straight k
Putting values of A, B, C in (1), we get,
6k(x – 1) + (–3 k)(y – 2) + k(z – 3) = 0 or    6 (x – 1) –3 (y – 2) + (z – 3) = 0
or    6x – 6 – 3y + 6 + z – 3 = 0
or    6x-3y + z=3
which is required equation of plane.

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.