-->

Linear Programming

Question
CBSEENMA12033562

A diet is to contain at least 80 units of vitamin A and 100 units of minerals. Two foods F1 and F2 are available. Food F1 costs Rs 4 per unit food and F2 costs Rs 6 per unit. One unit of food F2 contains 3 units of vitamin A and 4 units of minerals. One unit of food F2 contains 6 units of vitamin A and 3 units of minerals. Formulate this as a linear programming problem. Find the minimum cost for diet that consists of mixture of these two foods and also meets the minimal nutritional requirements.

Solution

Let the diet contain x units of food F1 and y units of food F2.
Let Z be the cost.
Table

Type

Number

Vitamin A

Minerals

Cost (Rs.)

F1

x

3x

4x

4x

F2

y

6y

3y

6y

Total

 

3x + 6y

4x + 3y

4 x + 6 y

We are to minimise
Z = 4x + 6y
subject to constraints
3x + 6y ≥ 80
4x + 3y ≥ 100
x ≥ 0, y ≥ 0
              Now we draw the graph of 3x + 6y = 80
          For x = 0,   6 y = 80  or   y = 40 over 3
           For y = 0,   3 x = 80   or   straight x equals 80 over 3
      therefore space space space space space space space line space meets space OX space in space straight A open parentheses 80 over 3 comma 0 close parentheses space space and space OY space in space straight L open parentheses 0 comma space 40 over 3 close parentheses.
Again we draw the graph of 4x + 3 y = 100
For x = 0,  3y = 100   or   y = 100 over 3
For y = 0,   4x = 100  or  x = 25
therefore   line meets OX in B(25, 0) and OY in M open parentheses 0 comma space 100 over 3 close parentheses.       

Since feasible region satisfies all the constraints.
∴ shaded region is the feasible region which is unbounded and has comer points are 
straight A open parentheses 80 over 3 comma space 0 close parentheses comma space space space straight C open parentheses 24 comma space 4 over 3 close parentheses comma space space straight M space open parentheses 0 comma space space 100 over 3 close parentheses.

At space space space straight A open parentheses 80 over 3 comma 0 close parentheses comma space straight Z space equals 4 cross times 80 over 3 plus 6 cross times 0 space equals space 320 over 3
At space straight C open parentheses 24 comma space 4 over 3 close parentheses comma space space straight Z space equals space 4 space cross times space 24 space plus space 6 space cross times space 4 over 3 space equals space 96 plus 8 space equals space 104
At space straight M open parentheses 0 comma space 100 over 3 close parentheses comma space space straight Z space equals space 4 space cross times space 0 space plus space 6 space cross times space 100 over 3 space equals space 0 plus 200 space equals space 200
therefore space space space space smallest space value space of space straight Z space is space 104 space at space open parentheses 24 comma space 4 over 3 close parentheses

Since feasible region is unbounded.
∴ we are to check whether this value is minimum.
For this we draw the graph of
4x + 6y < 104    ...(1)
Since (1) has no common point with feasible region.
                       therefore space space space space space space space space space space space space space minimum space value space space equals space 104 space at space open parentheses 24 comma space 4 over 3 close parentheses
therefore space space space space space space space space minimum space cost space is space Rs. space 104 space when space 24 space units space of space food space straight F subscript 1 space and space 4 over 3 space units space of space food space straight F subscript 2 space are space mixed space for space the space diet.