-->

Linear Programming

Question
CBSEENMA12033561

Reshma wishes to mix two types of food P and Q in such a way that the vitamin contents of the mixture contain at least 8 units of vitamin A and 11 units of vitamin B. Food P costs Rs 60/kg and Food Q costs Rs 80/kg. Food P contains 3 units/kg of Vitamin A and 5 units/kg of Vitamin B while food Q contains 4 units/kg of Vitamin A and 2 units/kg of vitamin B. Determine the minimum cost of the mixture.

Solution

Let the mixture contain x kg. of food P and y kg. of food Q.
Clearly x ≥ 0, y ≥ 0.
Let Z be the total cost.
Table

Food

Quantity (in units)

Content of Vitamin A (in units)

Content of Vitamin B (in units)

Cost (in Rs.)

P

x

3x

5x

60x

Q

y

4y

2y

80y

Total

 

3x + 4y

5x + 2y

60x + 80y

Mathematical formulation of the given problem is as follows:
Minimise Z = 60 x + 80 y
subject to the constraints
3x + 4y ≥ 8
5x + 2y ≥ 11
x ≥ 0, y ≥ 0.
Consider a set of rectangular cartesian axes OXY in the plane.
It is clear that any point which satisfies x ≥ 0, y ≥ 0 lies in the first quadrant.
Now we draw the graph of 3x + 4y = 8
For x = 0,   4y = 8   or  y = 2
For y = 0,  3x = 8   or straight x equals 8 over 3
therefore space space space space space space space line space meets space OX space in space straight A space open parentheses 8 over 3 comma space 0 close parentheses
and OY in L(0, 2)
              Again we draw the graph of 5x + 2y = 11
              For x = 0,  2y = 11   or   straight y space equals 11 over 2
              For y = 0,   5x = 11   or  straight x equals space 11 over 5

therefore space space space line space meets space OX space in space straight B space open parentheses 11 over 5 comma space 0 close parentheses
and OY in straight M open parentheses 0 comma space 11 over 2 close parentheses     

Since feasible region satisfies all the constraints.
∴ shaded region is the feasible region and it is unbounded.
The corner points are straight A open parentheses 8 over 3 comma 0 close parentheses comma space space space space straight C open parentheses 2 comma space 1 half close parentheses comma space space straight M open parentheses 0 comma space 11 over 2 close parentheses
At space space space space straight A open parentheses 8 over 3 comma space 0 close parentheses comma space space space straight Z space equals space 60 cross times 8 over 3 plus 0 space equals space 160
At space space space space straight C open parentheses 2 comma space 1 half close parentheses comma space space straight Z space equals space 60 cross times 2 space plus space 80 space cross times 1 half space equals space 120 plus 40 space equals space 160
At space straight M space open parentheses 0 comma space 11 over 2 close parentheses comma space space space straight Z space equals space 60 space cross times space 0 space plus space 80 space cross times space 11 over 2 space equals space 440
therefore space space smallest space value space of space straight Z space equals space 160 space at space open parentheses 8 over 3 comma space 0 close parentheses comma space open parentheses 2 comma space 1 half close parentheses  

Since feasible region is unbounded.
∴ we are to check whether this value is minimum.
For this we draw the graph 60x + 80 y < 160 i.e. 3x + 4y < 8    ...(1)
 Since (1) has no common point with feasible region.
       therefore  minimum cost  = 160 at open parentheses 8 over 3 comma space 0 close parentheses comma space space open parentheses 2 comma space 1 half close parentheses i.e. at points lying on segment joining open parentheses 8 over 3 comma space 0 close parentheses space and space open parentheses 2 comma space 1 half close parentheses.