-->

Three Dimensional Geometry

Question
CBSEENMA12033436

If from a point P (a, b, c) perpendiculars PA and PB are drawn to yz and zx-planes, then find the vector equation of the plane OAB.

Solution

Point P is (a, b, c)
PA ⊥ y z-plane and PB ⊥ z x-plane.
∴ A is (0, b, c) and B is (a, 0, c)
We are to find the equation of plane through (0, 0, 0), (0, b, c) and (a, 0, c).
The equation of plane through (0, 0, 0) is
λ (x – 0) + μ (y – 0) + v (z – 0) = 0
∴ λx + μ y + v z = 0    ...(1)
∴ it passes through (0, b, c) and (a, 0, c)
∴ 0 λ + b μ + c v = 0
and  a λ + 0 μ + c v = 0
Solving these, we get,
                       fraction numerator straight lambda over denominator bc minus 0 end fraction space equals fraction numerator straight mu over denominator straight c space straight a minus 0 end fraction space equals space fraction numerator straight v over denominator 0 minus ab end fraction
therefore space space space straight lambda over bc space equals space straight mu over ca space equals space fraction numerator straight v over denominator negative ab end fraction space equals space straight k space left parenthesis say right parenthesis
therefore space space space space space space space space space space straight lambda space equals space straight k space straight b space straight c comma space space space straight mu space equals space straight k space straight c space straight a comma space space space straight v space equals space minus space straight k space straight a space straight b

Putting values of λ, μ,v in (1), we get,
k b c x + k c a y – k a b z = 0
or  straight x over straight a plus straight y over straight b minus straight z over straight c space equals space 0 comma space which space is space required space of space plane. space