-->

Three Dimensional Geometry

Question
CBSEENMA12033429

Find the equation of the plane through the points (0, – 1, 0), (2, 1, –1) and (1,1,1). 

Solution

The equation of plane passing through (0, – 1, 0) is
A(x – 0) + B(y + 1) + C(z – 0) = 0    ...(1)
∴ it passes through (2, 1, – 1)
∴ A (2 – 0) + B(1 + 1) + C(– 1 – 0) = 0
∴ 2A + 2B – C = 0    ...(2)
Again plane (1) passes through (1, 1, 1)
∴ A( 1 – 0) + B(1 + 1) + C(1 – 0) = 0
∴ A + 2B + C = 0    ....(3)
Solving (2) and (3), we get,
                         fraction numerator straight A over denominator 2 plus 2 end fraction space equals fraction numerator straight B over denominator negative 1 minus 2 end fraction space equals space fraction numerator straight C over denominator 4 minus 2 end fraction
therefore                straight A over 4 space equals space fraction numerator straight B over denominator negative 3 end fraction space equals space straight C over 2 equals straight k space left parenthesis say right parenthesis
therefore space space space space space space space straight A space equals space 4 straight k comma space space space straight B space equals space minus 3 straight k comma space space space straight C space equals 2 space straight k
Putting values of A, B, C in (1), we get,
4 k (x – 0) – 3 k (y + 1) + 2 k (z – 0) = 0
∴ 4 x – 3 y + 2 z = 0
∴ 4 x – 3 y + 2 z = 3
which is required equation of plane.