-->

Three Dimensional Geometry

Question
CBSEENMA12033423

Find the equation of the plane which contains the line of intersection of the planes straight r with rightwards arrow on top. space open parentheses straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses space minus space 4 space equals 0 space space space and space space straight r with rightwards arrow on top. space space left parenthesis 2 straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top right parenthesis space plus space 5 space equals space 0 and which is perpendicular to the plane straight r with rightwards arrow on top. space open parentheses 5 straight i with hat on top space plus space 3 straight j with hat on top space minus space 6 straight k with hat on top space close parentheses space plus space 8 space equals 0 space.

Solution
The equations of given planes are
                       straight r with rightwards arrow on top. space open parentheses straight i with hat on top space plus space 2 space space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses space minus space 4 space equals space space 0
and                 straight r with rightwards arrow on top. space left parenthesis 2 straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top right parenthesis space plus 5 space space equals 0
or space space left parenthesis straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top right parenthesis. space space open parentheses straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses space minus space 4 space equals space 0
or space space left parenthesis straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top right parenthesis. space open parentheses 2 space straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top close parentheses space plus space 5 space equals space 0
or space space space straight x plus space 2 straight y space plus space 3 straight z space minus space 4 space equals space 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
and space space 2 straight x plus straight y minus straight z plus 5 space equals space 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis space space space space space space space space space space space

Any plane through the intersection of planes (1) and (2) is
(x + 2 y + 3 z – 4) + k (2 x + y – z + 5) = 0    ...(3)
i.e. (2 k + 1) x + (k + 2) y + (– k + 3) z + (5 k – 4) = 0
Direction ratios of the its normal are 2 k + 1, k + 2, – k + 3.
Again consider the plane
                        straight r with rightwards arrow on top. space open parentheses 5 space straight i with bar on top space plus 3 space straight j with hat on top space minus space 6 space straight k with hat on top close parentheses space plus space 8 space equals space 0
or              open parentheses straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top close parentheses space. space open parentheses 5 space straight i with hat on top space plus space 3 space straight j with hat on top space minus space 6 space straight k with hat on top close parentheses space plus space 8 space space equals 0
or              5 straight x plus 3 straight y minus 6 straight z plus 8 space equals space 0                                          ...(4)

Direction ratios of its normal are 5, 3, -6
Since plane (3) is perpendicular to plane (4)
∴ 5 (2 k + 1) + 3 (k + 2) + (–6) (– k + 3) = 0
∴ 10 k + 5 + 3 k + 6 + 6 k – 18 = 0
therefore space space space space space space 19 space straight k space equals space 7 space space space space space space space space rightwards double arrow space space space space straight k space equals space 7 over 19
Putting straight k space equals space 7 over 19 space in space left parenthesis 3 right parenthesis comma space we space get comma
                left parenthesis straight x plus 2 straight y plus 3 straight z minus 4 right parenthesis plus 7 over 19 left parenthesis 2 straight x plus straight y minus straight z plus 5 right parenthesis space equals space 0
or 19 (x + 2y + 3z – 4) + 7 (2 x + y – z + 5) = 0
or 19x+ 38y + 57z – 76 + 14x + 7y – 7z + 35 = 0
or 33x + 45y + 50z – 41 = 0
which is required equation of plane.

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.