-->

Three Dimensional Geometry

Question
CBSEENMA12033421

Find the equation of the plane passing through the line of intersection of the planes straight r with rightwards arrow on top. space open parentheses straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top close parentheses space equals space 1 space space space and space space straight r with rightwards arrow on top. space space open parentheses 2 space straight i with hat on top space plus space 3 space straight j with hat on top space minus space straight k with hat on top close parentheses space plus space 4 space space equals 0 and parallel to x-axis. 

Solution
The equations of the planes are
                 straight r with rightwards arrow on top space space left parenthesis straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top right parenthesis space equals space 1 space space space and space straight r with rightwards arrow on top. space space left parenthesis 2 space straight i with hat on top space plus space 3 space straight j with hat on top space minus space space straight k with hat on top right parenthesis space plus space 4 space equals 0
or       left parenthesis straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top right parenthesis. space left parenthesis straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top right parenthesis space minus space 1 space equals space 0
and    open parentheses straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top close parentheses. space space open parentheses 2 space straight i with hat on top space plus space 3 space straight j with hat on top space minus straight k with hat on top close parentheses space plus space 4 space equals 0
or          straight x plus straight y plus straight z minus 1 space equals space 0                                              ...(1)
and       2 straight x plus 3 straight y minus straight z plus 4 space equals space 0                                          ...(2)
Any plane through the intersection of planes (1) and (2) is
(x + y + z – 1) + k (2x + 3y – r + 4) = 0    ...(3)
or (2k + 1) at + (3k + 1) y + (– k + 1) z + (4k – 1) = 0
Its direction ratios are 2k + 1, 3k + 1, – k + 1.
Since plane is parallel to x-axis with direction ratios 1, 0, 0.
∴  1 (2k + 1) + (0) (3k + 1) + 0 (– k + 1) = 0
therefore space space space space space 2 straight k plus 1 space equals space 0 space space space space space space space space space rightwards double arrow space space space space 2 space straight k space equals space space minus 1 space space space space space space space space space rightwards double arrow space space space straight k space equals space minus 1 half
Putting straight k equals negative 1 half space in space left parenthesis 3 right parenthesis comma space we space get comma
              open parentheses straight x plus straight y plus straight z minus 1 close parentheses space minus space 1 half left parenthesis 2 straight x plus 3 straight y minus straight z plus 4 right parenthesis space equals space 0
or          2 space left parenthesis straight x plus straight y plus straight z minus 1 right parenthesis space minus space left parenthesis 2 straight x plus 3 straight y minus straight z plus 4 right parenthesis space equals space 0
or    2x + 2y + 2z – 2 – 2x – 3y + z – 4 = 0
or    – y + 3z – 6 = 0
or    y - 3z + 6 = 0
Which is required equation of plane. 

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.