-->

Three Dimensional Geometry

Question
CBSEENMA12033416

Find the equation of the plane through the intersection of the planes 3x – y + 2 z – 4 = 0 and x + y + z – 2 = 0 and the point (2, 2, 1).

Solution

Any plane passing through the intersection of planes
3x – y + 2 z – 4 = 0 and x + y + z – 2 = 0 is
(3x – y + 2 z – 4) + k (x + y + z – 2) = 0    ...(1)
∴  it passes through (2, 2, 1)
∴  (6 – 2 + 2 – 4) + k (2 + 2 + 1 – 2) = 0
therefore space space 2 plus space 3 space straight k space equals space 0 space space space space space or space space space straight k space equals space minus 2 over 3
Putting straight k space equals space minus 2 over 3 space in space left parenthesis 1 right parenthesis comma space space we space get comma
              left parenthesis 3 straight x minus straight y plus 2 straight z minus 4 right parenthesis space minus space 2 over 3 left parenthesis straight x plus straight y plus straight z minus 2 right parenthesis space equals space 0
or 3 (3x – y + 2 z – 4) – 2 (x + y + z – 2) = 0
or 9x – 3 y + 6 z – 12 – 2x – 2 y – 2 z + 4 = 0
or 7x – 5 y + 4 z = 8, which is required equation of plane.