-->

Three Dimensional Geometry

Question
CBSEENMA12033414

Find the equation of the plane through the intersection of the planes x + y + z = 9 and 2 x + 3 y + 4 z + 5 = 0 and passing through the point (1, 1, 1).

Solution

The equation of any plane through the intersection of planes
x + y + z = 9 i.e., x + y + z – 9 = 0 and 2 x + 3 y + 4 z + 5 = 0 is
(x + y + z – 9) + k (2 x + 3 y + 4 z + 5) = 0    ...(1)
∴   it passes through the point (1, 1, 1)
∴  (1 + 1 + 1 – 9) + k (2 + 3 + 4 + 5) = 0
rightwards double arrow space space space minus 6 space plus space 14 space straight k space equals space 0 space space space space space space rightwards double arrow space space space space straight k space equals space 6 over 14 space equals space 3 over 7
Putting this value of k in (1), we get,
            open parentheses straight x plus straight y plus straight z minus 9 close parentheses plus 3 over 7 left parenthesis 2 straight x plus 3 straight y plus 4 straight z plus 5 right parenthesis space equals 0
or       7 space left parenthesis straight x plus straight y plus straight z minus 9 right parenthesis space plus space 3 space left parenthesis 2 straight x plus 3 straight y plus 4 straight z plus 5 right parenthesis space equals space 0
or       7 straight x plus 7 straight y plus 7 straight z minus 63 plus 6 straight x plus 9 straight y plus 12 straight z plus 15 space equals space 0
or                                       13 straight x plus 16 straight y plus 19 straight z space minus space 48 space equals 0
which is required equation of plane. 

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.