-->

Three Dimensional Geometry

Question
CBSEENMA12033489

Find the distance of a point P (5, 3, 4) from the point where the line fraction numerator straight x minus 3 over denominator 1 end fraction space equals fraction numerator straight y minus 4 over denominator 2 end fraction space equals fraction numerator straight z minus 5 over denominator 2 end fraction meets the plane x + y + z = 2.

Solution
The given line is
       fraction numerator straight x minus 3 over denominator 1 end fraction space equals space fraction numerator straight y minus 4 over denominator 2 end fraction space equals space fraction numerator straight z minus 5 over denominator 2 end fraction                             ...(1)
and the given plane is    
x + y + z =  2    ...(2)
Any point on (1) is (r + 3, 2r + 4, 2r + 5)
Let it be the point of intersection of line (1) and plane (2).
∴  point (r + 3, 2r + 4, 2 r + 5) lies on (2)
∴  r + 3 + 2r + 4 + 2r + 5 = 2 ⇒ 5r = – 10 ⇒ r = –2
∴ point of intersection is (1, 0, 1)
∴ required distance = distance between points (5, 3, 4) and (1, 0, 1)
equals space square root of left parenthesis 1 minus 5 right parenthesis squared plus left parenthesis 0 minus 3 right parenthesis squared plus left parenthesis 1 minus 4 right parenthesis squared end root space equals square root of 16 plus 9 plus 9 end root space equals square root of 34