-->

Three Dimensional Geometry

Question
CBSEENMA12033480

Find the image of the point (1, 2, 3) in the plane x + 2y + 4z = 38.

Solution

The equation of plane is
x + 2 y + 4 z = 38    ...(1)
Direction ratios of the normal to the plane are 1, 2, 4
Let M be foot of perpendicular from P(l, 2, 3) to the plane.
Now PM is a straight line which passes through P( 1, 2, 3) and has direction ratios as 1,2,4.
∴  its equations are

fraction numerator straight x minus 1 over denominator 1 end fraction space equals space fraction numerator straight y minus 2 over denominator 2 end fraction space equals space fraction numerator straight z minus 3 over denominator 4 end fraction space equals space straight r space left parenthesis say right parenthesis
Any point M on line is (r + 1, 2 r + 2, 4 r + 3)
∵  M lies on plane (1)
∴  (r + 1) + 2 (2 r + 2) + 4 (4 r + 3) = 38
∴   r + 1 +4r + 4 + 16r + 12 = 38
∴ 21 R = 21 ⇒  r = 1
∴ M is (1 + 1,2 + 2,4 + 3) i.e. (2,4,7)
Let N(α, β, γ) be image of P in the plane (1) so that M is mid-point of PN.
therefore space space space space space space space space space space space space space fraction numerator 1 plus straight alpha over denominator 2 end fraction space equals space 2 comma space space space space fraction numerator 2 plus straight beta over denominator 2 end fraction space space equals space 4 comma space space space fraction numerator 3 plus straight gamma over denominator 2 end fraction space equals space 7
therefore space space space space space space space space space space straight alpha equals space 3 comma space space space space straight beta space equals space 6 comma space space space straight gamma space equals space 11
∴ image is (3, 6, 11).

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.