-->

Three Dimensional Geometry

Question
CBSEENMA12033446

Find the equation of the plane passing through the point (–1, –1, 2) and perpendicular to the planes 2x + 3 y – 2 z = 5 and x + 2 y – 3 z = 8.

Solution

The equation of any plane through (1, – 1, 2) is
a(x – 1) + b (y + 1) + c (z – 2) = 0    ...(1)
∴ it is perpendicular to the planes
2x + 3 y – 2 z = 5 and x + 2 y – 3 z = 8
∴ 2 a + 3 b – 2 c = 0    ...(2)
and a + 2 b – 3 c = 0    ...(3)
Solving (2) and (3), we get,
                 fraction numerator straight a over denominator negative 9 plus 4 end fraction space equals space fraction numerator straight b over denominator negative 2 plus 6 end fraction space equals space fraction numerator straight c over denominator 4 minus 3 end fraction space space space or space space space fraction numerator straight a over denominator negative 5 end fraction space equals space straight b over 4 space equals space straight c over 1
therefore space space space space space space space space space straight a over 5 space equals space fraction numerator straight b over denominator negative 4 end fraction space equals space fraction numerator straight c over denominator negative 1 end fraction space equals space straight k comma space space say.
therefore space space space space space space space space space straight a space equals space 5 space straight k comma space space space straight b space equals space minus 4 space straight k comma space space straight c space equals space minus straight k
Putting values of a, b, c in (1), we get,
5 k (x – 1) – 4 k (y + 1) – k (z – 2) = 0
or 5 (x – 1) – 4 (y + 1) – 1 (z – 2) = 0
or 5 x – 5 – 4 y – 4 – z + 2 = 0
or 5 x – 4 y – z – 7, which is required equation of plane.