-->

Three Dimensional Geometry

Question
CBSEENMA12033445

Find the equation of the plane passing through the point (–1, –1, 2) and perpendicular to the planes 3x + 2 y – 3 z = 1 and 5 x – 4 y + z = 5. 

Solution

The equation of any plane through (– 1, – 1, 2) is
a (x + 1) + b (y + 1) + c (z – 2) = 0    ....(1)
∴ it is perpendicular to the planes
3 x + 2 y – 3 z = 1 and 5 x – 4 y + z = 5
∴ 3 a + 2 b – 3 c = 0    ....(2)
and 5a – 4 b + c = 0    ...(3)
Solving (2) and (3), we get,
                             fraction numerator straight a over denominator 2 minus 12 end fraction space equals space fraction numerator straight b over denominator negative 15 minus 3 end fraction space equals space fraction numerator straight c over denominator negative 12 minus 10 end fraction
therefore space space space space space fraction numerator straight a over denominator negative 10 end fraction space equals space fraction numerator straight b over denominator negative 18 end fraction space equals space fraction numerator straight c over denominator negative 22 end fraction
therefore space space space space space space space space space space straight a over 5 space equals space straight b over 9 space equals space fraction numerator straight c over denominator negative 22 end fraction
therefore space space space space space space space space space space space space space space straight a space equals space 5 space straight k comma space space space straight b space equals space 9 space straight k comma space space space straight c space equals space 11 space straight k

Putting values of a, b, c in (1), we get,
5 k (x + 1) + 9 k (y + 1) + 11 k (z – 2) = 0
or 5 (x + 1) + 9 (y + 1) + 11 (z – 2) = 0
∴ 5x + 9 y + 11 z – 8 = 0 which is required equation of plane.


Some More Questions From Three Dimensional Geometry Chapter