-->

Three Dimensional Geometry

Question
CBSEENMA12033444

Find the equation of the plane passing through (1, 1, – 1) and perpendicular to planes x + 2 y + 3 z – 7 = 0, 2 x –3 y + 4 z = 0. 

Solution

The equation of the plane through (1, 1, – 1) is
a (x – 1) + b (y – 1) + c (z + 1) = 0    ...(1)
∴ it is perp. to the planes
x + 2 y + 3 z = 7 and 2 x – 3 y + 4 z = 0
∴ a + 2 b + 3 c = 0    ...(2)
and 2 a – 3 b + 4 c = 0    ...(3)
solving (2) and (3), we get
fraction numerator straight a over denominator 8 plus 9 end fraction space equals space fraction numerator straight b over denominator 6 minus 4 end fraction space equals space fraction numerator straight c over denominator negative 3 minus 4 end fraction space space space space space space space space space space space space space space space space space space space rightwards double arrow space space straight a over 17 space equals straight b over 2 space equals space fraction numerator straight c over denominator negative 7 end fraction space equals space straight k space left parenthesis say right parenthesis
∴  a = 17 k, b = 2 k, c = –7 k
Putting these values of a, b, c in (1), we get,
17 k (x – 1) + 2 k (y – 1) –7 k (z + 1) = 0
or 17 (x – 1) + 2(y – 1) –7(z + 1) = 0
or 17x – 17 + 2y – 2 – 7 z – 7 = 0
or 17 x + 2 y – 7 z – 26 = 0, which is required equation of plane.

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.