Sponsor Area

Three Dimensional Geometry

Question
CBSEENMA12033442

Find the equation of the plane which passes through the points (0, 0, 0) and (3, –1, 2) and is parallel to the line fraction numerator straight x minus 4 over denominator 1 end fraction space equals space fraction numerator straight y plus 3 over denominator negative 4 end fraction space equals space fraction numerator straight z plus 1 over denominator 7 end fraction.

Solution

The equation of any plane through (0, 0, 0) is
A (x – 0) + B (y – 0) + C (z – 0) = 0
or A x + B y + C z = 0    ...(1)
∴ it passes through (3, –1, 2)
∴ 3A – B + 2C = 0    ...(2)
Since plane (1) is parallel to the line fraction numerator straight x minus 4 over denominator 1 end fraction space equals space fraction numerator straight y plus 3 over denominator negative 4 end fraction space equals space fraction numerator straight z plus 1 over denominator 7 end fraction.

∴ normal to the plane with direction ratios A, B, C is perpendicular to the line with direction ratios 1, – 4,  7.
∴ A (1) + B (– 4) + C(7) = 0     [∴ aa2 +bb2 +cc= 0]
∴ A – 4B + 7C = 0    ...(3)
Solving (2) and (3), we get,
                    fraction numerator straight A over denominator negative 7 plus 8 end fraction space equals space fraction numerator straight B over denominator 2 minus 21 end fraction space equals space fraction numerator straight C over denominator negative 12 plus 1 end fraction
therefore space space space space straight A over 1 space equals space fraction numerator straight B over denominator negative 19 end fraction space equals space fraction numerator straight C over denominator negative 11 end fraction space equals space straight k space left parenthesis say right parenthesis
therefore space space space space space straight A space equals space straight k comma space space space straight B space equals space minus 19 space straight k comma space space space straight C space equals space minus 11 space straight k
Putting values of A, B, C in (1), we get,
k x – 19 k y – 11 k z = 0
or x – 19 y – 11 z = 0
which is required equation of plane.

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.