-->

Three Dimensional Geometry

Question
CBSEENMA12033440

Find the equation of the plane passing through the points (2, 3, – 4), (1, –1, 3) and parallel to x-axis.

Solution

The equation of plane through (2, 3, - 4) is
A (x – 2) + B (y – 3) + C (z + 4) = 0    ...(1)
∴ it passes through (1, –1, 3)
∴ A (1 – 2) + B (–1–3) + C (3 + 4) = 0
∴ – A– 4B + 7C = 0
∴ A + 4B – 7C = 0    ...(2)
Now plane (1) is parallel to x-axis.
∴ normal to the plane (1), with direction ratios A, B, C is perpendicular to x-axis with direction ratios 1, 0, 0.
∴ A (1) + B (0) + C (0) = 0
∴ A + 0B + 0C = 0    ...(3)
From (2) and (3), we get,
                       fraction numerator straight A over denominator 0 minus 0 end fraction space equals space fraction numerator straight B over denominator 7 minus 0 end fraction space equals space fraction numerator straight C over denominator 0 minus 4 end fraction
therefore space space space space space space space space space space space space space space straight A over 0 space equals fraction numerator straight B over denominator negative 7 end fraction space equals space fraction numerator straight C over denominator negative 4 end fraction
therefore space space space space space space space space space space space space space straight A over 0 space equals space straight B over 7 space equals space straight C over 4 space space equals space straight k space space left parenthesis say right parenthesis
therefore space space space space space space space space space space space space space straight A space equals space 0 comma space space space straight B space equals space 7 straight k comma space space straight C space equals space 4 straight k
Putting values of A, B, C in (1), we get,
0 (x – 2) + 7k (y – 3) – 4k (z + 4) = 0
or 7 (y – 3) + 4 (z + 4) = 0
or 7 y – 21 + 4z + 16 = 0
or 7 y + 4 z – 5 = 0,
which is required equation of plane.

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.