-->

Three Dimensional Geometry

Question
CBSEENMA12033332

Find the shortest distance between the lines
                                 straight r with rightwards arrow on top space equals space 6 space straight i with hat on top space plus space 2 space straight j with hat on top space space plus space 2 space straight k with hat on top space plus space straight lambda left parenthesis straight i with hat on top space minus space 2 straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis
 and                          straight r with rightwards arrow on top space equals space minus 4 space straight i with hat on top space minus space straight k with hat on top space plus space straight mu left parenthesis 3 space straight i with hat on top space minus space 2 space straight j with hat on top space minus space 2 space straight k with hat on top right parenthesis
              

Solution
The equations of two lines are
                           straight r with rightwards arrow on top space equals space 6 space straight i with bar on top space plus space 2 space straight j with hat on top space plus space 2 space straight k with hat on top space plus space straight lambda left parenthesis straight i with hat on top space minus space 2 space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis                      ...(1)
and                    straight r with rightwards arrow on top space equals space minus 4 space straight i with hat on top space minus space straight k with hat on top space plus space straight mu left parenthesis 3 space straight i with hat on top space minus space 2 space straight j with hat on top space minus space 2 space straight k with hat on top right parenthesis                            ...(2)
Comparing these equations with
straight r with rightwards arrow on top space equals space stack straight a subscript 1 with rightwards arrow on top space plus space straight lambda space stack straight b subscript 1 with rightwards arrow on top space space and space straight r with rightwards arrow on top space equals space stack straight a subscript 2 with rightwards arrow on top space plus space straight mu space stack straight b subscript 2 with rightwards arrow on top comma space we space get comma
stack straight a subscript 1 with rightwards arrow on top space equals space 6 space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 2 space straight k with hat on top comma space space space stack straight b subscript 1 with rightwards arrow on top space equals space straight i with hat on top space minus space 2 space straight j with hat on top space plus space 2 space straight k with hat on top
stack straight a subscript 2 with rightwards arrow on top space equals space minus 4 space straight i with hat on top space minus space straight k with hat on top comma space space space space stack straight b subscript 2 with rightwards arrow on top space equals space 3 space straight i with hat on top space minus space 2 space straight j with hat on top space minus space 2 space straight k with hat on top
Let 'S be the point on line (1) with position vector stack straight a subscript 1 with rightwards arrow on top and T be the point on line (2) with position vector stack straight a subscript 2 with rightwards arrow on top so that

                       ST with rightwards arrow on top space equals space stack straight a subscript 2 with rightwards arrow on top space minus space stack straight a subscript 1 with rightwards arrow on top space equals space minus 10 space straight i with hat on top space minus space 2 space straight j with hat on top space minus space 3 space straight k with hat on top
Now,      stack straight b subscript 1 with rightwards arrow on top space cross times space stack straight b subscript 2 with rightwards arrow on top space equals space open vertical bar table row cell straight i with hat on top end cell cell straight j with hat on top end cell cell straight k with hat on top end cell row 1 cell negative 2 end cell 2 row 3 cell negative 2 end cell cell negative 2 end cell end table close vertical bar
                             equals space straight i with hat on top space open vertical bar table row cell negative 2 end cell 2 row cell negative 2 end cell cell negative 2 end cell end table close vertical bar minus space straight j with hat on top space open vertical bar table row 1 2 row 3 cell negative 2 end cell end table close vertical bar space plus space straight k with hat on top space open vertical bar table row 1 cell negative 2 end cell row 3 cell negative 2 end cell end table close vertical bar
                              equals space left parenthesis 4 plus 4 right parenthesis space straight i with hat on top space minus space left parenthesis negative 2 minus 6 right parenthesis space straight j with hat on top space plus space left parenthesis negative 2 plus 6 right parenthesis space straight k with hat on top space equals space 8 straight i with hat on top space plus space 8 straight j with hat on top space plus space 4 straight k with hat on top
therefore             open vertical bar stack straight b subscript 1 with rightwards arrow on top space cross times space stack straight b subscript 2 with rightwards arrow on top close vertical bar space equals space square root of 64 plus 64 plus 16 end root space equals space square root of 144 space equals space 12
Let PQ with rightwards arrow on top be the S.D. vector between given lines.
Therefore, it is parallel to stack straight b subscript 1 with rightwards arrow on top space cross times space stack straight b subscript 2 with rightwards arrow on top.
If  straight n with rightwards arrow on top is a unit vector along PQ with rightwards arrow on top, then
                               straight n with rightwards arrow on top space equals space fraction numerator stack straight b subscript 1 with rightwards arrow on top space cross times space stack straight b subscript 2 with rightwards arrow on top over denominator open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close vertical bar end fraction space equals space 1 over 12 left parenthesis 8 straight i with hat on top space plus space space 8 straight j with hat on top space plus space space 4 straight k with hat on top right parenthesis space equals space 1 third left parenthesis 2 space straight i with hat on top space plus space 2 space straight j with hat on top space plus space straight k with hat on top right parenthesis
Now              straight S. straight D. space equals space Projection space of space ST with rightwards arrow on top space space on space space PQ with rightwards arrow on top
                            equals space Projection space of space ST with rightwards arrow on top space space on space space straight n with rightwards arrow on top space equals space ST with rightwards arrow on top. space space straight n with rightwards arrow on top
equals left parenthesis negative 10 space straight i with hat on top space minus space 2 space straight j with hat on top minus space 3 space straight k with hat on top right parenthesis. space 1 third left parenthesis 2 stack straight i space with hat on top space plus space 2 space straight j with hat on top space plus space straight k with hat on top right parenthesis
equals space 1 third open square brackets left parenthesis negative 10 right parenthesis thin space left parenthesis 2 right parenthesis space plus space left parenthesis negative 2 right parenthesis thin space left parenthesis 2 right parenthesis space plus space left parenthesis negative 3 right parenthesis thin space left parenthesis 1 right parenthesis close square brackets
equals 1 third left parenthesis negative 20 minus 4 minus 3 right parenthesis space equals space minus 27 over 3 space equals space minus 9 space equals space 9 space units. space left parenthesis in space magnitude right parenthesis
                      
        
          

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.