-->

Three Dimensional Geometry

Question
CBSEENMA12033331

Find the shortest distance between the lines whose vector equations are
          straight r with rightwards arrow on top space equals left parenthesis space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis space plus space straight lambda left parenthesis straight i with hat on top space minus space 3 space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis
and    straight r with rightwards arrow on top space equals space 4 straight i with hat on top space plus 5 space straight j with hat on top space plus space 6 space straight k with hat on top space plus space straight mu space left parenthesis 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space straight k with hat on top right parenthesis

Solution
The equations of two lines are
                       straight r with rightwards arrow on top space equals left parenthesis space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis space plus space straight lambda left parenthesis straight i with hat on top space minus space 3 space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis space space space space space space space space space space space space space space space space space space space space space space space space space...(1)
and                straight r with rightwards arrow on top space equals space 4 straight i with hat on top space plus 5 space straight j with hat on top space plus space 6 space straight k with hat on top space plus space straight mu space left parenthesis 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space straight k with hat on top right parenthesis                        ...(2)
Comparing these equations with
straight r with rightwards arrow on top space equals stack straight a subscript 1 with rightwards arrow on top space plus space straight lambda space stack straight b subscript 1 with rightwards arrow on top space space space and space space straight r with rightwards arrow on top space equals space stack straight a subscript 2 with rightwards arrow on top space plus space straight mu space stack straight b subscript 2 with rightwards arrow on top comma space we space get comma
stack straight a subscript 1 with rightwards arrow on top space equals space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top comma space space stack straight b subscript 1 with rightwards arrow on top space equals space straight i with hat on top space minus space 3 space straight j with hat on top space plus space 2 space straight k with hat on top
stack straight a subscript 2 with rightwards arrow on top space equals space 4 space straight i with hat on top space plus space 5 space straight j with hat on top space plus space 6 space straight k with hat on top comma space space space stack straight b subscript 2 with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space straight k with hat on top
Let S be point on line (1) with position vector stack straight a subscript 1 with rightwards arrow on top and T be point on line (2) with position vector stack straight a subscript 2 with rightwards arrow on top so that

ST with rightwards arrow on top space equals space stack straight a subscript 2 with rightwards arrow on top space minus space stack straight a subscript 1 with rightwards arrow on top space equals space 3 space straight i with hat on top space plus space space 3 space straight j with hat on top space plus space 3 space straight k with hat on top
straight b with rightwards arrow on top subscript 1 cross times stack straight b subscript 2 with rightwards arrow on top space equals space open vertical bar table row cell straight i with hat on top end cell cell straight j with hat on top end cell cell straight k with hat on top end cell row 1 cell negative 3 end cell 2 row 2 3 1 end table close vertical bar space equals space straight i with hat on top space open vertical bar table row cell negative 3 end cell 2 row 3 1 end table close vertical bar minus straight j with hat on top space open vertical bar table row 1 2 row 2 1 end table close vertical bar space plus straight k with overparenthesis on top space open vertical bar table row 1 cell negative 3 end cell row 2 3 end table close vertical bar
              equals space left parenthesis negative 3 minus 6 right parenthesis space straight i with hat on top minus left parenthesis 1 minus 4 right parenthesis space straight j with hat on top space plus left parenthesis 3 plus 6 right parenthesis space straight k with hat on top space equals space minus 9 straight i with hat on top plus space 3 straight j with hat on top space plus space 9 straight k with hat on top
open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times space stack straight b subscript 2 with rightwards arrow on top close vertical bar space equals space square root of 81 plus 9 plus 81 end root space equals space square root of 171
Let PQ with rightwards arrow on top  be the S.D. vector between given lines. 
Therefore, it is parallel to stack straight b subscript 1 with rightwards arrow on top space cross times space stack straight b subscript 2 with rightwards arrow on top.
If straight n with rightwards arrow on top is a unit vector along PQ with rightwards arrow on top comma then
         straight n with rightwards arrow on top space equals space fraction numerator stack straight b subscript 1 with rightwards arrow on top space cross times stack straight b subscript 2 with rightwards arrow on top over denominator open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close vertical bar end fraction space equals space minus fraction numerator 1 over denominator square root of 171 end fraction left parenthesis negative 9 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 9 space straight k with hat on top right parenthesis
            equals space fraction numerator 1 over denominator square root of 19 end fraction left parenthesis negative 3 space straight i with hat on top space space plus space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis
Now S.D. = Projection of 
ST with rightwards arrow on top space on space PQ with rightwards arrow on top
space equals space Projection space of space ST with rightwards arrow on top space space on space space straight n with rightwards arrow on top space equals space ST with rightwards arrow on top. space straight n with rightwards arrow on top
space equals space left parenthesis 3 straight i with hat on top space plus space 3 space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis space. space fraction numerator 1 over denominator square root of 19 end fraction left parenthesis negative 3 space straight i with hat on top space plus space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis
space equals space fraction numerator 1 over denominator square root of 19 end fraction open square brackets left parenthesis 3 right parenthesis space left parenthesis negative 3 right parenthesis space plus space left parenthesis 3 right parenthesis thin space left parenthesis 1 right parenthesis space plus space left parenthesis 3 right parenthesis thin space left parenthesis 3 right parenthesis close square brackets
space equals space fraction numerator 1 over denominator square root of 19 end fraction space left square bracket negative 9 plus 3 plus 9 right square bracket space equals space fraction numerator 3 over denominator square root of 19 end fraction


          

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.