-->

Three Dimensional Geometry

Question
CBSEENMA12033325

Find the angle between the two lines whose direction cosines are given by the equations:
l + m + n = 0,           l2 + m2 – n2 = 0

Solution

The given equation are
l + m + n = 0    ...(1)
and l2 + m2 – n2 = 0    ....(2)
From (1), n = – (l + m)    ....(3)
From (2) and (3), we get,
l2 + m2 – (l + m)2 = 0 or – 2 l m = 0
⇒ l m = 0
therefore                   either   l = 0
therefore          1. l + 0 .m + 0. n = 0
Also,            l+m+n = 0
Solving, 
                    fraction numerator straight l over denominator 0 minus 0 end fraction space equals space fraction numerator straight m over denominator 0 minus 1 end fraction space equals space fraction numerator straight n over denominator 1 minus 0 end fraction
therefore      straight l over 0 space equals space fraction numerator straight m over denominator negative 1 end fraction space equals space straight n over 1             
or                      m = 0
therefore       0.l + l.m + 0.n = 0
Also,               l + m + n = 0
Solving,
                     fraction numerator straight l over denominator 1 minus 0 end fraction space equals space fraction numerator straight m over denominator 0 minus 0 end fraction space equals space fraction numerator straight n over denominator 0 minus 1 end fraction
therefore                           straight l over 1 space equals space straight m over 0 space equals space fraction numerator straight n over denominator negative 1 end fraction
∴  direction ratios of the two lines are 0, – 1, 1 ; 1, 0, – 1
Let  θ be the angle between the lines
therefore space space space space cos space straight theta space equals space fraction numerator left parenthesis 0 right parenthesis thin space left parenthesis 1 right parenthesis space plus space left parenthesis negative 1 right parenthesis thin space left parenthesis 0 right parenthesis space plus space left parenthesis 1 right parenthesis thin space left parenthesis negative 1 right parenthesis over denominator square root of left parenthesis 0 right parenthesis squared plus left parenthesis negative 1 right parenthesis squared plus left parenthesis 1 right parenthesis squared end root space square root of left parenthesis 1 right parenthesis squared plus left parenthesis 0 right parenthesis squared plus left parenthesis negative 1 right parenthesis squared end root end fraction space equals negative 1 half
∴    acute angle θ between the lines is given by
cos space straight theta space equals space 1 half space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space space straight theta space equals space 60 degree
                       

Some More Questions From Three Dimensional Geometry Chapter