-->

Three Dimensional Geometry

Question
CBSEENMA12033324

A variable line in two adjacent positions has direction cosines < l, m, n > and < l + δl, m + δm, n + δn >. Show that the small angle δθ between two positions is given by
(δθ )2 = (δl)2 + (δm)2 + (δn)2

Solution

Since < l, m, n > and < l + δl, m + δm, n + δn > are direction cosines of two lines
∴    l2 + m2 + n= 1    ...(1)
and (l + δl)2 + (m + δm)2 + (n2 + δn)2 = 1
or (l2 + m2 + n2) + 2 (l δl + m δm + n δn) + [(δl)+ (δm)2 + (δn)2] = 1
or 1+2 (I δl + m δm + n δn) + [ (δl)2 + (δm)2 + (δn)2 ] = 1    [∵ of (1)]
or (δl)2 + (δm)2 + (δn)2 = – 2 (lδ l + m δm) + n δn)    ....(2)
Now δθ is angle between two lines
∴ cos δθ = l (l + δl) + m (m + δm) + n (n + δn)
therefore space space space space 1 minus 2 space sin squared δθ over 2 space equals space left parenthesis straight l squared plus straight m squared plus straight n squared right parenthesis space plus space left parenthesis straight l space δl space plus space straight m space straight delta space straight m space plus space straight n space straight delta space straight n right parenthesis
therefore space space space space 1 minus 2 space sin squared δθ over 2 space equals space 1 plus left parenthesis straight l space straight delta space straight l space space plus space straight m space straight delta space straight m space plus space straight n space straight delta space straight n right parenthesis
therefore space space space space minus 2 open parentheses δθ over 2 close parentheses squared space equals space straight l space straight delta space straight l space plus space straight m space straight delta space straight m space plus space straight n space straight delta space straight n space space space space space space space space space space space space space open square brackets because space space space space sin δθ over 2 space equals δθ over 2 space as space δθ over 2 space is space small close square brackets
therefore space space space space space space space space left parenthesis δθ right parenthesis squared space equals space minus 2 left parenthesis straight l space straight delta space straight l space space plus space straight m space straight delta space straight m space plus space straight n space straight delta space straight n right parenthesis
rightwards double arrow space space space space space space space space left parenthesis δθ right parenthesis squared space equals space left parenthesis δl right parenthesis squared plus left parenthesis δm right parenthesis squared plus left parenthesis δn right parenthesis squared space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space of space left parenthesis 2 right parenthesis close square brackets

 

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.