-->

Three Dimensional Geometry

Question
CBSEENMA12033320

A line makes angle α, β, γ and δ with the diagonals of a cube, prove that
cos squared straight alpha space plus space cos squared straight beta space plus space cos squared straight gamma space space plus cos squared straight delta space equals space 4 over 3.

Solution
Take O, a corner of cube OBLCMANP, as origin and OA, OB, OC, the three edges through it as the axes.

Let OA = OB = OC = a, then the co-ordinates of O , A , B , C are (0, 0, 0), (a, 0, 0), (0, a, 0), (0, 0, a) respectively ; those of P, L, M, N are (a, a, a), (0, a, a), (a, 0, a), (a, a, 0) respectively.
The four diagonals are OP, AL, BM, CN. Direction cosines of OP are proportional to a – 0, a – 0, a – 0, i.e., a, a, a, i.e., 1,1,1.
Direction-cosines of AL are proportional to 0 – a, a – 0, a – 0 i.e., –a, a, a, i.e., – 1, 1, 1.
Direction-cosines of BM are proportional to a – 0, 0 – a, a – 0, i.e., a – a, a i.e., 1, – 1, 1.
Direction-cosines of CN are proportional to a – 0, a – 0, 0 – a i.e., a, a,– a i.e., 1, 1, – 1.
therefore  direction -cosines of OP are fraction numerator 1 over denominator square root of 3 end fraction comma space fraction numerator 1 over denominator square root of 3 end fraction comma space fraction numerator 1 over denominator square root of 3 end fraction
Directon-cosines of AL are negative fraction numerator 1 over denominator square root of 3 end fraction comma space fraction numerator 1 over denominator square root of 3 end fraction comma space fraction numerator 1 over denominator square root of 3 end fraction
Direction-cosines of BM are fraction numerator 1 over denominator square root of 3 end fraction comma space minus fraction numerator 1 over denominator square root of 3 end fraction comma space fraction numerator 1 over denominator square root of 3 end fraction
Direction-cosines of CN are fraction numerator 1 over denominator square root of 3 end fraction comma space fraction numerator 1 over denominator square root of 3 end fraction comma space minus fraction numerator 1 over denominator square root of 3 end fraction
Let l, m, n be direction-cosines of the line
∴    the line makes an angle α with OP.
therefore              cos space straight alpha space equals space straight l open parentheses fraction numerator 1 over denominator square root of 3 end fraction close parentheses plus straight m space open parentheses fraction numerator 1 over denominator square root of 3 end fraction close parentheses space plus space straight n open parentheses fraction numerator 1 over denominator square root of 3 end fraction close parentheses
or                 cos space straight alpha space equals space fraction numerator straight l plus straight m plus straight n over denominator square root of 3 end fraction                                         ...(1)
Similarly        cos space straight beta space equals space fraction numerator negative straight l plus straight m plus straight n over denominator square root of 3 end fraction                                     ...(2)
                 cos space straight gamma space equals space fraction numerator straight l minus straight m plus straight n over denominator square root of 3 end fraction                                            ...(3)
cos space straight delta space equals space fraction numerator straight l plus straight m minus straight n over denominator square root of 3 end fraction

Squaring and adding (1), (2), (3) and (4), we get,
cos2 α + cos2 β + cos2 γ + cos2 δ
                      equals space 1 third open square brackets left parenthesis straight l plus straight m plus straight n right parenthesis squared plus left parenthesis negative straight l plus straight m plus straight n right parenthesis squared plus left parenthesis straight l minus straight m plus straight n right parenthesis squared plus left parenthesis straight l plus straight m minus straight n right parenthesis squared close square brackets
space equals space 1 third open square brackets 4 space straight l squared plus space 4 space straight m squared plus space 4 space straight n squared close square brackets space equals space 4 over 3 left parenthesis straight l squared plus space straight m squared space plus space straight n squared right parenthesis space equals space 4 over 3 left parenthesis 1 right parenthesis
therefore space space space cos squared straight alpha space plus space cos squared straight beta space plus space cos squared straight gamma space plus space cos squared straight delta space equals space 4 over 3.

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.