-->

Three Dimensional Geometry

Question
CBSEENMA12033317

Find the image of the point (1, 6, 3) in the line straight x over 1 space equals space fraction numerator straight y minus 1 over denominator 2 end fraction space equals space fraction numerator straight z minus 2 over denominator 3 end fraction.

Solution
The equations of given line are
straight x over 1 space equals space fraction numerator straight y minus 1 over denominator 2 end fraction space equals space fraction numerator straight z minus 2 over denominator 3 end fraction

From P (1, 6, 3) , draw PM ⊥ AB and produce it to P' (α, β γ) such that M is mid-point of PP'. Then P' is image of P in line AB.
Any point M as line AB is
(r. 2 r + 1, 3 r + 2)
Direction ratios of AB are 1, 2, 3
Direction ratios of PM are r – 1 , 2 r + 1 – 6 , 3 r + 2 – 3
i.e. r – 1, 2 r – 5, 3 r – 1
∵ PM ⊥ AB∴ (1) (r – 1) + (2) (2 r – 5) + (3) (3 r – 1) = 0
∴ i + 4 r – 10 + 9 r – 3 = 0
∴ 14 r = 14 ⇒ r = 1
∴ M is (1, 3, 5)
Now M is mid-point of PP'
therefore space space space space space fraction numerator straight alpha plus 1 over denominator 2 end fraction space equals space 1 comma space space space space fraction numerator straight beta plus 6 over denominator 2 end fraction space equals space 3 comma space space space fraction numerator straight gamma plus 3 over denominator 2 end fraction space equals space 5
therefore space space space straight alpha plus 1 space equals space 2 comma space space space space space space space space space straight beta plus 6 space equals space 6 comma space space space space straight gamma space plus space 3 space equals space 10
therefore space space space straight alpha space equals space 1 comma space space space space space space space space space space space straight beta space equals space 0 comma space space space space space space space space straight gamma space equals space 7
therefore space space space space image space is space left parenthesis 1 comma space 0 comma space 7 right parenthesis