-->

Three Dimensional Geometry

Question
CBSEENMA12033305

If the straight lines having direction cosines given by al + bm + cn = 0 and fmn + gnI + hIm = 0 are perpendicular, then show that straight f over straight a plus straight g over straight b plus straight h over straight c space equals space 0

Solution
Given that a I + b m + c n = 0,
i.e.                     straight n space equals fraction numerator negative left parenthesis al plus bm right parenthesis over denominator straight c end fraction                           ...(1)
Also,      straight f space straight m space straight n plus straight g space straight n space straight l plus straight h space straight l space straight m space equals space 0                           ...(2)
Substituting value of n from (1) in (2), we get
              fm open square brackets fraction numerator negative left parenthesis al plus bm right parenthesis over denominator straight c end fraction close square brackets space plus space straight g space straight l space open square brackets fraction numerator negative left parenthesis al space plus space bm right parenthesis over denominator straight c end fraction close square brackets space plus space straight h space straight l space straight m space equals space 0
or          straight a space straight f space straight m space straight l space plus straight b space straight f space straight m squared space plus space straight a space straight g space straight l squared space plus space straight b space straight g space straight l space straight m space minus space straight h space straight c space straight l space straight m space equals space 0
On dividing both sides by m2, we have
     straight a space straight g space open parentheses straight l over straight m close parentheses squared plus straight l over straight m left parenthesis straight a space straight f space plus space straight b space straight g space minus space straight c space straight h right parenthesis space plus space straight b space straight f space equals space 0
If l1, m1, n1 and l2, m2 , nare the direction cosines of the two lines, then the roots of the equation (3) as straight l subscript 1 over straight m subscript 1 space and space straight l subscript 2 over straight m subscript 2 space space give
fraction numerator straight l subscript 1 space straight l subscript 2 over denominator straight m subscript 1 space straight m subscript 2 end fraction space equals space fraction numerator straight b space straight f over denominator straight a space straight g end fraction space space space straight i. straight e. comma space space space space fraction numerator straight l subscript 1 space straight l subscript 2 over denominator begin display style straight f over straight a end style end fraction space equals space fraction numerator straight m subscript 1 space straight m subscript 2 over denominator begin display style straight g over straight b end style end fraction                                   ...(4)
Similarly, using (1) and (2) and by elimination of 1, we get
fraction numerator straight m subscript 1 space straight m subscript 2 over denominator begin display style straight g over straight b end style end fraction space equals space fraction numerator straight n subscript 1 space straight n subscript 2 over denominator begin display style straight h over straight c end style end fraction                                                           ...(5)
Combining (4) and (5), we have
                       fraction numerator straight l subscript 1 straight l subscript 2 over denominator begin display style straight f over straight a end style end fraction space equals space fraction numerator straight m subscript 1 space straight m subscript 2 over denominator begin display style straight g over straight b end style end fraction space equals space fraction numerator straight n subscript 1 space straight n subscript 2 over denominator begin display style straight h over straight c end style end fraction space equals space straight k space left parenthesis say right parenthesis
therefore space space space space straight l subscript 1 space straight l subscript 2 space equals space fraction numerator straight k space straight f over denominator straight a end fraction comma space space space space space straight m subscript 1 space straight m subscript 2 space equals space straight k space fraction numerator straight k space straight g over denominator straight b end fraction comma space space straight n subscript 1 straight n subscript 2 space equals space fraction numerator straight k space straight h over denominator straight c end fraction                 ...(6)
We know that the lines with direction cosines l1, m1, n1 and l2, m2, n2 are perpendicular if
l1 l2 + m1m2 + n1n= 0    ....(7)
From (6) and (7), we get,
straight k open parentheses straight f over straight a close parentheses plus straight k open parentheses straight g over straight b close parentheses space plus space straight k space open parentheses straight h over straight c close parentheses space equals space 0 space space space space or space space space space straight f over straight a plus straight g over straight b plus straight h over straight c space equals space 0

Some More Questions From Three Dimensional Geometry Chapter