-->

Three Dimensional Geometry

Question
CBSEENMA12033304

Show that, if the axes are rectangular, then the equations of the line through (α, β, γ) right angles to the lines
straight x over straight l subscript 1 space equals space straight y over straight m subscript 1 space equals space straight z over straight n subscript 1 comma space space straight x over straight l subscript 2 space equals space straight y over straight m subscript 2 space equals space straight z over straight n subscript 2

are fraction numerator straight x minus straight alpha over denominator straight m subscript 1 space straight n subscript 2 minus straight m subscript 2 straight n subscript 1 end fraction space equals space fraction numerator straight y minus straight beta over denominator straight n subscript 1 straight l subscript 2 minus straight n subscript 2 straight l subscript 1 end fraction space equals fraction numerator straight z minus straight gamma over denominator straight l subscript 1 straight m subscript 2 minus straight l subscript 2 straight m subscript 1 end fraction.

Solution
The equations of given lines are
                      straight x over straight l subscript 1 space equals space straight y over straight m subscript 1 space equals space straight z over straight n subscript 1                                      ...(1)
and           straight x over straight l subscript 2 space equals space straight y over straight m subscript 2 space equals space straight z over straight n subscript 2                                           ...(2)
Any line through  (α, β, γ) is
fraction numerator straight x minus straight alpha over denominator straight l end fraction space equals space fraction numerator straight y minus straight beta over denominator straight m end fraction equals fraction numerator straight z minus straight gamma over denominator straight n end fraction
where l, m, n are direction-ratios of the line
Since (3) is perpendicular to (1)
∴ l l1 + m m1 + n n1 = 0    ....(4)
Since (3) is perpendicular to (2)
∴ I l2 + m m2 + n n2 = 0
Solving (4) and (5), we get,
fraction numerator straight l over denominator straight m subscript 1 straight n subscript 2 space minus space straight m subscript 2 straight n subscript 1 end fraction space equals space fraction numerator straight m over denominator straight n subscript 1 straight l subscript 2 minus straight n subscript 2 straight l subscript 1 end fraction space equals space fraction numerator straight n over denominator straight l subscript 1 straight m subscript 2 minus straight l subscript 2 straight m subscript 1 end fraction
∴   from (3), the equations of line are
fraction numerator straight x minus straight alpha over denominator straight m subscript 1 straight n subscript 2 minus straight m subscript 2 straight n subscript 1 end fraction space equals space fraction numerator straight y minus straight beta over denominator straight n subscript 1 straight l subscript 2 minus straight n subscript 2 straight l subscript 1 end fraction space equals space fraction numerator straight z minus straight gamma over denominator straight l subscript 1 straight m subscript 2 minus straight l subscript 2 straight m subscript 1 end fraction

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.