-->

Three Dimensional Geometry

Question
CBSEENMA12033300

Show that the lines x = ay + b, z = cy + d and x = a' y + b' , z = c' y + d' are perpendicular to each other, if aa' + cc' + 1 = 0.

Solution
The equations of the lines are
                        x = ay + b,    z = cy + d
and                  straight x space equals space straight a apostrophe straight y space plus space straight b apostrophe comma space space straight z space equals space straight c apostrophe straight y space plus space straight d apostrophe
or                  fraction numerator straight x minus straight b over denominator straight a end fraction space equals space straight y over 1 space equals space fraction numerator straight z minus straight d over denominator straight c end fraction
and            fraction numerator straight x minus straight b apostrophe over denominator straight a apostrophe end fraction space equals space straight y over 1 space equals space fraction numerator straight z minus straight d apostrophe over denominator straight c apostrophe end fraction
∴    direction ratios of two lines are a, 1, c and a', 1, c'.
The two lines are perpendicular if
(a) (a') + (1) (1) + (c) (c') = 0    [∵ a1 a2 + b1 b2 + c1 c2 = 0]
i.e. if aa' + cc' + 1 = 0

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.