Sponsor Area

Three Dimensional Geometry

Question
CBSEENMA12033381

In the following cases, find the coordinates of the foot of the perpendicular
drawn from the origin.
 2x + 3y + 4z – 12 = 0

Solution

The equation of given plane is
2 x + 3 y + 4 z – 12 = 0    ...(1)
Dividing both sides by square root of left parenthesis 2 right parenthesis squared plus left parenthesis 3 right parenthesis squared plus left parenthesis 4 right parenthesis squared end root space equals space square root of 4 plus 9 plus 16 end root space equals space square root of 29 comma space space we space get comma
fraction numerator 2 over denominator square root of 29 end fraction straight x plus fraction numerator 3 over denominator square root of 29 end fraction straight y plus fraction numerator 4 over denominator square root of 29 end fraction straight z space equals space fraction numerator 12 over denominator square root of 29 end fraction space which space of space normal space form. space
∴ direction cosines of the normal OP are fraction numerator 2 over denominator square root of 29 end fraction comma space fraction numerator 3 over denominator square root of 29 end fraction comma space fraction numerator 4 over denominator square root of 29 end fraction where O is origin and P(x1,y1, z1) is foot of perpendicular.
Direction ratios of OP are x– 0, y1 – 0, – 0 i.e. x1, y1, z1.
Since direction cosines and direction ratios of a line are proportional.
therefore space space space fraction numerator straight x subscript 1 over denominator begin display style fraction numerator 2 over denominator square root of 29 end fraction end style end fraction space equals space fraction numerator straight y subscript 1 over denominator begin display style fraction numerator 3 over denominator square root of 29 end fraction end style end fraction space equals space fraction numerator straight z subscript 1 over denominator begin display style fraction numerator 4 over denominator square root of 29 end fraction end style end fraction space equals space straight k comma space say.
therefore space space space space space space space space space space space space space space straight x subscript 1 space equals space fraction numerator 2 over denominator square root of 29 end fraction straight k comma space space space straight y subscript 1 space equals space fraction numerator 3 over denominator square root of 29 end fraction straight k comma space space space straight z subscript 1 space equals space fraction numerator 4 over denominator square root of 29 end fraction straight k
therefore space space space space straight P space is space open parentheses fraction numerator 2 over denominator square root of 29 end fraction straight k comma space space fraction numerator 3 over denominator square root of 29 end fraction straight k comma space space fraction numerator 4 over denominator square root of 29 end fraction straight k close parentheses
Since P lies on plane (1)
                   fraction numerator 4 over denominator square root of 29 end fraction straight k space plus space fraction numerator 9 over denominator square root of 29 end fraction straight k space plus space fraction numerator 16 over denominator square root of 29 end fraction straight k space equals space 12
therefore space space space space fraction numerator 29 over denominator square root of 29 end fraction straight k space space equals space 12 space space space space space space rightwards double arrow space space space space space square root of 29 space straight k space equals space 12 space space space space space rightwards double arrow space space space space space straight k space equals space space fraction numerator 12 over denominator square root of 29 end fraction
therefore space space foot space of space perpendicular space straight P space is space open parentheses 24 over 29 comma space 36 over 29 comma space 48 over 29 close parentheses.

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.