Sponsor Area

Three Dimensional Geometry

Question
CBSEENMA12033379

In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.
2x + 3 y – z = 5

Solution
The equation of plane is
2x + 3y – z = 5
Dividing both sides by square root of left parenthesis 2 right parenthesis squared plus left parenthesis 3 right parenthesis squared plus left parenthesis negative 1 right parenthesis squared end root space equals space square root of 4 plus 9 plus 1 end root space equals space square root of 14 comma space space we space get comma
                       fraction numerator 2 over denominator square root of 14 end fraction straight x plus fraction numerator 3 over denominator square root of 14 end fraction straight y space minus space fraction numerator 1 over denominator square root of 14 end fraction straight z space equals space fraction numerator 5 over denominator square root of 14 end fraction
It is of form lx + my + nz = p where
            straight l equals space fraction numerator 2 over denominator square root of 14 end fraction comma space space straight m space equals space fraction numerator 3 over denominator square root of 14 end fraction comma space space straight n space equals space minus fraction numerator 1 over denominator square root of 14 end fraction comma space space straight p space equals space fraction numerator 5 over denominator square root of 14 end fraction
∴  direction cosines of the normal to the plane are fraction numerator 2 over denominator square root of 14 end fraction comma space fraction numerator 3 over denominator square root of 14 end fraction comma space minus fraction numerator 1 over denominator square root of 14 end fraction and distance from origin  = fraction numerator 5 over denominator square root of 14 end fraction.