-->

Three Dimensional Geometry

Question
CBSEENMA12033378

In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.
x + y + z = 1

Solution
The equation of plane is x + y + z = 1
Dividing both sides by square root of left parenthesis 1 right parenthesis squared plus left parenthesis 1 right parenthesis squared plus left parenthesis 1 right parenthesis squared end root space equals space square root of 3 comma space space we space get comma
fraction numerator 1 over denominator square root of 3 end fraction straight x plus fraction numerator 1 over denominator square root of 3 end fraction straight y space plus space fraction numerator 1 over denominator square root of 3 end fraction straight z space equals space fraction numerator 1 over denominator square root of 3 end fraction
It is of form lx + my + nz = p
where straight l space equals space fraction numerator 1 over denominator square root of 3 end fraction comma space space straight m space equals space fraction numerator 1 over denominator square root of 3 end fraction comma space space straight n space equals space fraction numerator 1 over denominator square root of 3 end fraction comma space space straight p space equals space fraction numerator 1 over denominator square root of 3 end fraction
∴   direction cosines of the normal to the plane are fraction numerator 1 over denominator square root of 3 end fraction comma space fraction numerator 1 over denominator square root of 3 end fraction comma space fraction numerator 1 over denominator square root of 3 end fraction and distance from origin equals space fraction numerator 1 over denominator square root of 3 end fraction.