-->

Three Dimensional Geometry

Question
CBSEENMA12033360

If the line drawn from (4, –1, 2) meets a plane at right angles at the point (–10, 5, 4), then find the equation of the plane.

Solution

The equation of plane through (–10, 5, 4) is
A(x + 10) + B (y – 5) + C (z – 4) = 0    ...(1)
The direction ratios of the line through the points (4, –1, 2) and (–10.5. 4) are –10 – 4, 5+1, 4-2. i.e.– 14, 6, 2 i.e. 7,–3,–1.
∵  the line with direction ratios 7, –3.–1 'is normal to the plane (1).
∴  equation (1) of plane becomes
                       7 left parenthesis straight x plus 10 right parenthesis space minus space 3 left parenthesis straight y minus 5 right parenthesis space minus space 1 space left parenthesis straight z minus 4 right parenthesis space equals space 0 space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because straight A over 7 equals space fraction numerator straight B over denominator negative 3 end fraction equals fraction numerator straight C over denominator negative 1 end fraction close square brackets
or           7 straight x plus 70 minus 3 straight y plus 15 minus straight z plus 4 space equals space 0
or            7 straight x minus 3 straight y minus straight z plus 89 space equals space 0
which is the required equation of plane. 

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.