-->

Three Dimensional Geometry

Question
CBSEENMA12033231

Find the direction cosines of the sides of the triangle whose vertices are (3, 5, –4), (–1, 1, 2) and (–5, –5, –2).

Solution
Let A(3, 5, – 4), B(–1, 1, 2), C(–5, –5, –2) be the vertices of ΔABC.
Direction ratios of AB are – 1 – 3, 1 – 5, 2 + 4 i.e. – 4, – 4, 6
          Dividing each by square root of left parenthesis negative 4 right parenthesis squared plus left parenthesis negative 4 right parenthesis squared plus left parenthesis 6 right parenthesis squared end root
equals space square root of 16 plus 16 plus 36 end root space equals space square root of 68 comma space we space get space the space direction space
cosines of the line AB as negative fraction numerator 4 over denominator square root of 68 end fraction comma space minus fraction numerator 4 over denominator square root of 68 end fraction comma space fraction numerator 6 over denominator square root of 68 end fraction
    i.e.       negative fraction numerator 1 over denominator square root of 17 end fraction comma space space space minus fraction numerator 2 over denominator square root of 17 end fraction comma space fraction numerator 3 over denominator square root of 17 end fraction.

Direction ratios of BC are – 5 + 1, –5 –1, –2 –2 i.e. – 4, –6, –4.
               Dividing each by square root of left parenthesis negative 4 right parenthesis squared plus left parenthesis negative 6 right parenthesis squared plus left parenthesis negative 4 right parenthesis squared end root space equals space square root of 16 plus 36 plus 16 end root space equals space square root of 68 comma space we space get space the space     
           direction ratios of the line BC as negative fraction numerator 4 over denominator square root of 68 end fraction comma space minus fraction numerator 6 over denominator square root of 68 end fraction comma space minus fraction numerator 4 over denominator square root of 68 end fraction space space space or space space space minus fraction numerator 2 over denominator square root of 17 end fraction comma space minus fraction numerator 3 over denominator square root of 17 end fraction comma space minus fraction numerator 2 over denominator square root of 17 end fraction.
  Direction ratios of CA are 3+5, 5+5,  -4+2 i.e., 8, 10 -2.
  Dividing each by square root of left parenthesis 8 right parenthesis squared plus left parenthesis 10 right parenthesis squared plus left parenthesis negative 2 right parenthesis squared end root space equals space square root of 64 plus 100 plus 4 end root space equals space square root of 168 comma space we space get space the space
direction ratios of the line CA as fraction numerator 8 over denominator square root of 168 end fraction comma space fraction numerator 10 over denominator square root of 168 end fraction comma space space minus fraction numerator 2 over denominator square root of 168 end fraction comma space straight i. straight e. space fraction numerator 4 over denominator square root of 42 end fraction comma space fraction numerator 5 over denominator square root of 42 end fraction comma space minus fraction numerator 1 over denominator square root of 42 end fraction.

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.