-->

Differential Equations

Question
CBSEENMA12033213

Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of x coordinate (abscissa) and the product of the x coordinate and y coordinate (ordinate) of that point.

Solution
Let y = f (x) be equation of curve.
 Now dy over dx is the slope of the tangent to the curve at point (x, y)
From the given condition,
                     dx over dy space equals space straight x plus xy        or         dy over dx minus straight x space straight y space equals space straight x
Comparing dy over dx plus Py space equals space straight Q with dy over dx minus straight x space straight y space equals space straight x comma space we get,  P = -x,  Q = x
therefore space space space space space space space integral straight P space dx space equals negative integral straight x space dx space equals space minus straight x squared over 2 comma space space space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of negative straight x squared over 2 end exponent
Solution of differential equation is
                 straight y space straight e to the power of integral straight P space dx end exponent space equals space integral straight Q space straight e to the power of integral straight P space dx end exponent dx plus straight c
or        straight y space straight e to the power of negative straight x squared over 2 end exponent space equals space integral space straight x space straight e to the power of negative straight x squared over 2 end exponent dx plus straight c                               ...(1)
Let                   straight I space equals space integral space straight x space space straight e to the power of negative straight x squared over 2 end exponent dx plus straight c
Put negative straight x squared over 2 space equals space straight t comma space space space space therefore space space space space space space minus straight x space dx space space equals space dt space space space space rightwards double arrow space space space space straight x space dx space equals space minus dt
therefore                         straight I space equals space minus integral straight e to the power of straight t dt space equals space minus straight e to the power of straight t space equals space minus straight e to the power of negative straight x squared over 2 end exponent
therefore                       straight y space straight e to the power of negative straight x squared over 2 end exponent space equals space minus straight e to the power of negative straight x squared over 2 end exponent plus straight c
or                straight y space equals negative 1 plus space straight c space straight e to the power of straight x squared over 2 end exponent                              ...(2)
Since the curve passes through (0, 1)
therefore                       straight I space equals space minus 1 plus space straight c space straight e to the power of 0 space space space space rightwards double arrow space space space 2 space equals space straight c
therefore        from (2),   straight y equals negative 1 plus 2 space straight e to the power of straight x squared over 2 end exponent
or                 straight y plus 1 space equals space 2 space straight e to the power of straight x squared over 2 end exponent, which is required equation of curve. 

Some More Questions From Differential Equations Chapter