-->

Differential Equations

Question
CBSEENMA12033203

Solve the following differential equation:
(1 + y2)dx = (tan– 1 y – x) dy

Solution

The given equation is  (1 + y2)dx = (tan– 1 y – x) dy
 or      left parenthesis 1 plus straight y squared right parenthesis space dx over dy space equals space tan to the power of negative 1 end exponent straight y minus straight x space space space or space space left parenthesis 1 plus straight y squared right parenthesis space dy over dx plus straight x space equals space tan to the power of negative 1 end exponent straight y
or      dx over dy plus fraction numerator 1 over denominator 1 plus straight y squared end fraction straight x space equals space fraction numerator tan to the power of negative 1 end exponent straight y over denominator 1 plus straight y squared end fraction
therefore      Comparing it with dy over dx plus Px space equals space straight Q,  we get,
               straight P space equals fraction numerator 1 over denominator 1 plus straight y squared end fraction comma space space straight Q space equals fraction numerator tan to the power of negative 1 end exponent straight y over denominator 1 plus straight y squared end fraction comma space space space integral straight P space dy space equals space integral fraction numerator 1 over denominator 1 plus straight y squared end fraction dy space equals space tan to the power of negative 1 end exponent straight y
therefore space space space straight I. straight F. space equals space straight e to the power of integral straight P space dy end exponent space equals space straight e to the power of tan to the power of negative 1 end exponent straight y end exponent
therefore space space space solution space of space equation space is
                  straight x. space straight e to the power of tan to the power of negative 1 end exponent straight y end exponent space equals space space integral fraction numerator tan to the power of negative 1 end exponent straight y over denominator 1 plus straight y squared end fraction straight e to the power of tan to the power of negative 1 end exponent straight y end exponent dy plus straight c space space space space space space space space space open square brackets because space space space straight x space straight e to the power of integral straight P space dy end exponent space equals space integral straight Q space straight e to the power of integral straight P space dy end exponent dy space plus straight c close square brackets
Put tan to the power of negative 1 end exponent straight y space equals straight t space space space space space space space space space space space space space space space space space space space therefore space space space fraction numerator 1 over denominator 1 plus straight y squared end fraction dy space equals space dt
therefore space space straight x space straight e to the power of tan to the power of negative 1 end exponent straight y end exponent space equals space integral straight t space straight e to the power of straight t space dt space plus space straight c space equals space ke to the power of straight t minus space integral straight e to the power of straight t. space dt space plus space straight c space equals space straight t space straight e to the power of straight t space minus space straight e to the power of straight t plus straight c
therefore space space space straight x space straight e to the power of tan to the power of negative 1 end exponent straight y end exponent space equals space straight e to the power of tan to the power of negative 1 end exponent straight y end exponent left parenthesis tan to the power of negative 1 end exponent straight y space space minus 1 right parenthesis space plus straight c

Some More Questions From Differential Equations Chapter