-->

Three Dimensional Geometry

Question
CBSEENMA12033283

Find the vector equation of a line passing through a point with position vector straight i with hat on top space minus space 2 space straight j with hat on top space minus space 3 space straight k with hat on top and parallel to the line joining the points with position vectors straight i with hat on top space minus space straight j with hat on top space plus space 4 space straight k with hat on top and 2 space straight i with hat on top space plus space straight j with hat on top space plus space space 2 space straight k with hat on top. Also, find the cartesian equivalent of this equation. 

Solution

Let straight a with rightwards arrow on top space equals space straight i with hat on top space minus space 2 space straight j with hat on top space minus space 3 space straight k with hat on top be the position vector of A and straight i with hat on top space minus space straight j with hat on top space plus space 4 space straight k with hat on top comma space space space straight a with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space straight j with hat on top space plus space 2 space straight k with hat on top be position vectors of B and C.
therefore space space space space space space straight b with rightwards arrow on top space equals space BC with rightwards arrow on top space equals space straight P. straight V. space of space straight C space minus space straight P. straight V. space of space straight B
space space space space space space space space space space space space space space equals space left parenthesis 2 space straight i with hat on top space plus space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis space minus space open parentheses straight i with hat on top space minus space straight j with ¨ on top space plus space 4 space straight k with ¨ on top close parentheses space equals space straight i with hat on top space plus space 2 space straight j with hat on top space minus space 2 space straight k with hat on top
The vector equation of line through straight A space open parentheses thin space straight a with rightwards arrow on top close parentheses space and parallel to vector straight b with rightwards arrow on top is
                 straight r with rightwards arrow on top space equals space straight a with rightwards arrow on top space plus space straight lambda space straight b with rightwards arrow on top
or       straight r with rightwards arrow on top space equals space open parentheses straight i with rightwards arrow on top space minus space 2 space straight j with hat on top space minus space 3 space straight k with hat on top close parentheses space plus straight lambda space open parentheses straight i with hat on top space plus space 2 space stack straight j space with hat on top space minus space 2 space straight k with hat on top close parentheses
Now taking straight r with rightwards arrow on top space equals space straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top, the equation of line is
                       straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top space equals space open parentheses straight i with hat on top space minus 2 space straight j with hat on top space minus space 3 space straight k with hat on top close parentheses space plus space straight lambda space open parentheses straight i with hat on top plus 2 space straight j with hat on top space minus space 2 space straight k with hat on top close parentheses
or            straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top space equals space left parenthesis straight lambda plus 1 right parenthesis space straight i with hat on top space plus space left parenthesis 2 space straight lambda space minus space 2 right parenthesis space straight j with hat on top space minus space left parenthesis 2 straight lambda plus 3 right parenthesis space straight k with hat on top
Comparing the coefficients of straight i with hat on top comma space straight j with hat on top comma space straight k with hat on top we get, x = λ + 1, y = 2 λ – 2, z = – (2 λ + 3)
or          fraction numerator straight x minus 1 over denominator 1 end fraction space equals space fraction numerator straight y plus 2 over denominator 2 end fraction space equals space fraction numerator straight z plus 3 over denominator negative 2 end fraction space left parenthesis equals space straight lambda right parenthesis which is cartesian equation of line. 

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.