-->

Three Dimensional Geometry

Question
CBSEENMA12033281

The points A (4, 5, 10), B (2, 3, 4) and C (1, 2, – 1) are three vertices of a parallelogram ABCD. Find vector and cartesian equations for the sides AB and BC and find the coordinates of D.

Solution
A (4, 5, 10), B (2, 3, 4), C (1, 2, – 1) are three vertices of the parallelogram ABCD.

Direction-ratios of AB are 2 – 4, 3 – 5, 4 – 10 i.e.. – 2, – 2, – 6 i.e., 1, 1, 3 and AB passes through A (4, 5, 10)
∴        its vector equation is
 straight r with rightwards arrow on top space equals space open parentheses 4 space straight i with hat on top space plus space 5 space straight j with hat on top space plus space 10 space straight k with hat on top close parentheses space plus space straight lambda space left parenthesis straight i with hat on top space plus space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis
Also Cartesian equations of AB are
fraction numerator straight x minus 4 over denominator 1 end fraction space equals space fraction numerator straight y minus 5 over denominator 1 end fraction space equals fraction numerator straight z minus 10 over denominator 3 end fraction

Direction ratios of BC are 1– 2, 2 – 3, – 1, – 4
i.e. – 1, – 1, 5 i.e. 1, 1, 5 and BC passes through B (2, 3, 4)
∴    its vector equation is
straight r with rightwards arrow on top space equals space open parentheses 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 4 space straight k with hat on top close parentheses space plus space straight lambda space open parentheses straight i with hat on top space plus space straight j with hat on top space plus space 5 space straight k with hat on top close parentheses
Also cartesian equations of BC are
fraction numerator straight x minus 2 over denominator 1 end fraction space equals space fraction numerator straight y minus 3 over denominator 1 end fraction space equals fraction numerator straight z minus 4 over denominator 5 end fraction

Let (α, β, γ) be coordinates of D.
Now mid-points of AC is same as that of BD.
therefore space space space space open parentheses fraction numerator 4 plus 1 over denominator 2 end fraction comma space fraction numerator 5 plus 2 over denominator 2 end fraction comma space fraction numerator 10 minus 1 over denominator 2 end fraction close parentheses space equals space open parentheses fraction numerator straight alpha plus 2 over denominator 2 end fraction comma space space fraction numerator straight beta plus 3 over denominator 2 end fraction comma space fraction numerator straight gamma plus 4 over denominator 2 end fraction close parentheses
rightwards double arrow space space space space open parentheses 5 over 2 comma space 7 over 2 comma space 9 over 2 close parentheses space equals space open parentheses fraction numerator straight alpha plus 2 over denominator 2 end fraction comma space fraction numerator straight beta plus 3 over denominator 2 end fraction comma space fraction numerator straight gamma plus 4 over denominator 2 end fraction close parentheses space rightwards double arrow space space fraction numerator straight alpha plus 2 over denominator 2 end fraction space equals space 5 over 2 comma space space fraction numerator straight beta plus 3 over denominator 2 end fraction space equals 7 over 2 comma space fraction numerator straight gamma plus 4 over denominator 2 end fraction space equals 9 over 2
rightwards double arrow space space space straight alpha plus 2 space equals space 5 comma space space space straight beta plus 3 space equals space 7 comma space space space straight gamma plus 4 space equals 9 space space rightwards double arrow space space space space straight alpha space equals space 3 comma space space space straight beta space equals space 4 comma space space space space straight gamma space equals space 5 space space space space space rightwards double arrow space space space straight D space is space left parenthesis 3 comma space 4 comma space 5 right parenthesis.

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.