-->

Three Dimensional Geometry

Question
CBSEENMA12033276

Show that the point whose position vectors are given by negative 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 5 space straight k with hat on top comma space space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top space space and space space 7 straight i with hat on top space minus space straight k with hat on top are collinear. 

Solution
Given points have position vectors as negative 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 5 space straight k with hat on top comma space space space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top space space and space 7 space straight i with hat on top space minus space straight k with hat on top.
∴ points are (–2, 3, 5), (1, 2, 3), (7, 0, –1)
The equation of st. line through (–2, 3, 5), (1, 2, 3) is
fraction numerator straight x plus 2 over denominator 1 plus 2 end fraction space equals space fraction numerator straight y minus 3 over denominator 2 minus 3 end fraction space equals space fraction numerator straight z minus 5 over denominator 3 minus 5 end fraction space space space space space or space space space fraction numerator straight x plus 2 over denominator 3 end fraction space equals space fraction numerator straight y minus 3 over denominator negative 1 end fraction space equals space fraction numerator straight z minus 5 over denominator negative 2 end fraction
The point (7, 0, –1) will lie on it
if  fraction numerator 7 plus 2 over denominator 3 end fraction space equals space fraction numerator 0 minus 3 over denominator negative 1 end fraction space equals space fraction numerator negative 1 minus 5 over denominator negative 2 end fraction
i.e. if 3 = 3 = 3, which is true.
∴   the points (–2, 3, 5), (1, 2, 3) and (7, 0, –1) are collinear.
∴ points with position vectors negative 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 5 space straight k with hat on top comma space space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top and 7 space straight i with hat on top space minus space straight k with hat on top are collinear.