-->

Three Dimensional Geometry

Question
CBSEENMA12033256

Find the equation of line (vector and cartesian both) which is parallel to the vector 2 straight i with hat on top space minus straight j with hat on top plus 3 space straight k with hat on top and which passes through the point (5, -2, 4).

Solution
We know that the equation of a straight line passing through a fixed point with position vector straight a with rightwards arrow on top and parallel to the vector straight m with rightwards arrow on top is 
                              straight r with rightwards arrow on top space equals straight a with rightwards arrow on top plus straight lambda straight m with rightwards arrow on top                         ...(1)
where λ is a parameter.
Here straight a with rightwards arrow on top space equals space 5 space straight i with hat on top space minus space 2 space straight j with hat on top space plus space 4 space straight k with hat on top  and  straight m with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space straight j with hat on top space plus space 3 space straight k with hat on top
∴ from (1), the vector equation of line is
straight r with rightwards arrow on top space equals space open parentheses 5 space straight i with hat on top space minus space 2 stack space straight j with hat on top space plus space 4 space straight k with hat on top close parentheses space space plus space straight lambda space open parentheses 2 space straight i with overparenthesis on top space minus space straight j with overparenthesis on top plus space 3 space straight k with overparenthesis on top close parentheses                    ...(2)
Now  straight r with rightwards arrow on top space equals space straight x straight i with hat on top space plus space straight y space straight j with hat on top space plus straight z space straight k with hat on top space space as space straight r with rightwards arrow on top is the position vector of (x, y, z).
∴ from (2), we get,
straight x straight i with hat on top space plus space straight y space straight j with hat on top plus space straight z space straight k with hat on top space equals space left parenthesis 2 straight lambda plus 5 right parenthesis space straight i with hat on top space minus space left parenthesis straight lambda plus 2 right parenthesis space straight j with hat on top plus left parenthesis 3 space straight lambda space plus space 4 right parenthesis space straight k with overparenthesis on top
Comparing the coefficients of straight i with hat on top comma space straight j with hat on top comma space stack straight k comma with hat on top space we space get comma
x = 2 λ + 5, y = – (λ + 2), z = 3 λ + 4
This is the parametric form of the equation.
Again, fraction numerator straight x minus 5 over denominator 2 end fraction space equals fraction numerator straight y plus 2 over denominator negative 1 end fraction equals fraction numerator straight z minus 4 over denominator 3 end fraction space equals straight lambda
∴ cartesian form of the line is   fraction numerator straight x minus 5 over denominator 2 end fraction space equals fraction numerator straight y plus 2 over denominator negative 1 end fraction space equals fraction numerator straight z minus 4 over denominator 3 end fraction