-->

Three Dimensional Geometry

Question
CBSEENMA12033249

The projection of a line on the co-ordinate axes are 6, 2, 3. Find the length of the line and its direction cosines. Also, find the projection of the line segment joining (2, – 3, 1) to (4, 2, 3) on this line.

Solution

Let l, m, n be the direction cosines of the line PQ and let the length of the line segment be r.
∵    projections of the line segment on the axes are 6, 2, 3.
∴    l r = 6, m r = 2, n r = 3
Squaring and adding. we get,
(l2 + m2 + n2) r2 = 36 + 4 + 9
∵  r2 = 49 ⇒ r = 7
therefore space space space space straight l space equals space 6 over 7 comma space straight m space equals space 2 over 7 comma space space straight n space equals 3 over 7

 ∴ length of line = 7 units
and direction cosines of line PQ are 6 over 7 comma space 2 over 7 comma space 3 over 7.
We are to find projection of line segment joining A (2, -3, 1) to B (4, 2, 3) on PQ
therefore space space space projection space of space AB space on space PQ space equals space left parenthesis 4 minus 2 right parenthesis space open parentheses 6 over 7 close parentheses plus left parenthesis 2 plus 3 right parenthesis space open parentheses 2 over 7 close parentheses plus left parenthesis 3 minus 1 right parenthesis space open parentheses 3 over 7 close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 12 over 7 plus 10 over 7 plus 6 over 7 space equals 28 over 7 space equals space 4