-->

Three Dimensional Geometry

Question
CBSEENMA12033244

If P, Q, R, S are the points (– 2, 3, 4), (– 4, 4, 6), (4, 3, 5), (0, 1, 2), prove by projection that PQ is perpendicular to RS.

Solution

The given points are P (– 2, 3, 4), Q (– 4, 4, 6), R (4, 3, 5) and S (0, 1, 2).
Direction ratios of RS are. 0 – 4, 1 – 3, 2 – 5 i.e., – 4, – 2, – 3
∴    direction-cosines of RS are
     negative fraction numerator 4 over denominator square root of 16 plus 4 plus 9 end root end fraction comma space space minus fraction numerator 2 over denominator square root of 16 plus 4 plus 9 end root end fraction comma space minus fraction numerator 3 over denominator square root of 16 plus 4 plus 9 end root end fraction space space space straight i. straight e. comma space space minus fraction numerator 4 over denominator square root of 29 end fraction comma space minus fraction numerator 2 over denominator square root of 29 end fraction comma space minus fraction numerator 3 over denominator square root of 29 end fraction
therefore       projection of PQ on RS
                              equals space open square brackets negative 4 minus left parenthesis negative 2 right parenthesis close square brackets space space space open parentheses negative fraction numerator 4 over denominator square root of 29 end fraction close parentheses plus left parenthesis 4 minus 3 right parenthesis space open parentheses negative fraction numerator 2 over denominator square root of 29 end fraction close parentheses plus left parenthesis 6 minus 4 right parenthesis space open parentheses negative fraction numerator 3 over denominator square root of 29 end fraction close parentheses
                                                                  open square brackets because space space space of space space space left parenthesis straight x subscript 2 minus straight x subscript 1 right parenthesis space straight l space plus space left parenthesis straight y subscript 2 minus straight y subscript 1 right parenthesis space straight m space plus space left parenthesis straight z subscript 2 minus straight z subscript 1 right parenthesis space straight n close square brackets
                                equals space left parenthesis negative 2 right parenthesis space open parentheses negative fraction numerator 4 over denominator square root of 29 end fraction close parentheses plus left parenthesis 1 right parenthesis space open parentheses negative fraction numerator 2 over denominator square root of 29 end fraction close parentheses plus left parenthesis 2 right parenthesis space open parentheses negative fraction numerator 3 over denominator square root of 29 end fraction close parentheses
equals fraction numerator 8 over denominator square root of 29 end fraction minus fraction numerator 2 over denominator square root of 29 end fraction minus fraction numerator 6 over denominator square root of 29 end fraction equals 0
∴ PQ is perpendicular to RS.
[∵ projection of a line perpendicular to it is zero]

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.