-->

Differential Equations

Question
CBSEENMA12033134

Show that the differential equation straight x space cos space open parentheses straight y over straight x close parentheses dy over dx space equals straight y space cos space open parentheses straight y over straight x close parentheses plus straight x is homogeneous and solve it. 

Solution
The given differential equation is
                 space straight x space cos space open parentheses straight y over straight x close parentheses space dy over dx space equals space straight y space cos space open parentheses straight y over straight x close parentheses plus space straight x space space space or space space space space dy over dx space equals fraction numerator straight y space cos space open parentheses begin display style straight y over straight x end style close parentheses plus straight x over denominator straight x space cos space open parentheses begin display style straight y over straight x end style close parentheses end fraction      ...(1)
It is differential equation of the form dy over dx space equals space straight F left parenthesis straight x comma space straight y right parenthesis.
Here,  straight F left parenthesis straight x comma space straight y right parenthesis space equals space fraction numerator straight y space cos space open parentheses begin display style straight y over straight x end style close parentheses plus straight x over denominator straight x space cos space open parentheses begin display style straight y over straight x end style close parentheses end fraction
Replacing x by straight lambda space straight x  and y by λy comma we get
   space straight F left parenthesis λx comma space λy right parenthesis space equals space fraction numerator straight lambda space open square brackets straight y space cos space open parentheses begin display style straight y over straight x end style close parentheses plus straight x close square brackets over denominator straight lambda space open parentheses straight x space cos space begin display style straight y over straight x end style close parentheses end fraction space equals space straight lambda degree space space left square bracket straight F space left parenthesis straight x comma space straight y right parenthesis right square bracket
therefore space space space straight F left parenthesis straight x comma space straight y right parenthesis is a homogeneous function of degree zero. 
therefore space the given differential equation is a homogeneous differential equation
Put y = vx that dy over dx equals straight v plus straight x dv over dx
therefore space space space from space left parenthesis 1 right parenthesis comma space space straight v plus straight x dv over dx space equals space fraction numerator straight v space straight x space cos space open parentheses begin display style vx over straight x end style close parentheses plus straight x over denominator straight x space cos space open parentheses begin display style vx over straight x end style close parentheses end fraction
therefore space space space straight v plus straight x dv over dx space equals space fraction numerator straight v space straight x space cos space straight v space plus space straight x over denominator straight x space cos space straight v end fraction
or     straight v plus straight x dv over dx space equals fraction numerator straight v space cos space straight v plus 1 over denominator cos space straight v end fraction space space or space space straight x dv over dx space equals space fraction numerator straight v space cos space straight v space plus space 1 over denominator cos space straight v end fraction minus straight v
therefore space space space space space space space space straight x dv over dx space equals space fraction numerator straight v space cos space straight v plus 1 minus straight v space cos space straight v over denominator cos space straight v end fraction
therefore space space space space straight x dv over dx equals fraction numerator 1 over denominator cos space straight v end fraction
Separating the variables, we get,
                     cosv space dv space equals space 1 over straight x dx
Integrating,   integral space cos space straight v space dv space equals space integral 1 over straight x dx
therefore                   sin space straight v space equals space log space open vertical bar straight x close vertical bar space plus space log space open vertical bar straight c close vertical bar
or           sin space straight y over straight x space equals space log space open vertical bar straight c space straight x close vertical bar space which space is space required space solution. space

Some More Questions From Differential Equations Chapter